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Predictions from simulations have entered the mainstream of public policy and decision-making practices.
Unfortunately, methods for gaining insight into faulty simulations outputs have not kept pace. Ideally,
an insight gathering method would automatically identify the cause of a faulty output and explain to
the simulation developer how to correct it. In the field of software engineering, this challenge has been
addressed for general-purpose software through statistical debuggers. We present two research contributions,
elastic predicates and many-valued labeling functions, that enable debuggers designed for general-purpose
software to become more effective for simulations employing random variates and continuous numbers.
Elastic predicates address deficiencies of existing debuggers related to continuous numbers, whereas many-
valued labeling functions support the use of random variates. When used in combinations, these contributions
allow a simulation developer tasked with localizing the program statement causing the faulty simulation
output to examine 40% fewer statements than the leading alternatives. Our evaluation shows that elastic
predicates and many-valued labeling functions maintain their ability to reduce the number of program
statements that need to be examined under the imperfect conditions that developers experience in practice.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Debugging Aids

General Terms: Design, Algorithms, Experimentation

Additional Key Words and Phrases: Modeling and simulation, automated debugging, fault localization

ACM Reference Format:
Ross Gore, Paul F. Reynolds Jr., David Kamensky, Saikou Diallo, and Jose Padilla. 2015. Statistical debugging
for simulations. ACM Trans. Model. Comput. Simul. 25, 3, Article 16 (April 2015), 26 pages.
DOI: http://dx.doi.org/10.1145/2699722

1. INTRODUCTION

Proper modeling and simulation (M&S) practice requires ensuring that no bugs occur
when a conceptual model is translated into a computer simulation [Law and Kelton
1991]. The process assumes that the model design and desired input/output pairs have
been specified. Then, the simulation is constructed by employing either (1) a simula-
tion engine (i.e., Arena, Simulink), (2) a package or library (i.e., MATLAB, Facsimile,
Altera), or (3) a general-purpose programming language (i.e., Java, C/C++). Unfortu-
nately, no matter which option a developer chooses, constructing a bug-free simulation
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is not an atomic action. Inherently, the process requires iterations of testing and de-
bugging [Dijkstra 1976].

Most previous research in this domain focused on testing—determining if a simu-
lation is producing the intended output for a given input. In comparison, there has
been relatively little research on simulation debugging, which is the process of locat-
ing the cause of a faulty outcome in a simulation and correcting it [Krahl 2005]. This
discrepancy needs to be addressed; simulation debugging is largely manual, tedious,
time intensive, and costly. Automating even a portion of the task would significantly
reduce the time spent developing simulations and would improve efficiency.

Debuggers employing statistical, machine learning, and data mining techniques have
been developed to meet this goal for general-purpose software [Liblit 2008]. This area
of research is referred to as statistical debugging.

Statistical debuggers require a set of test inputs, corresponding execution traces,
and a labeling of the execution traces as passing or failing. The execution traces typ-
ically reflect coverage of individual statements or reflect the truth values of inserted
predicates. The debuggers assign suspiciousness scores to these program elements to
measure the likelihood that a given statement contains a fault. Then, the program
statements are ranked in descending order of suspiciousness and returned to the de-
veloper tasked with localizing the cause of the unexpected output. Given the ranked
set of statements, the Cost metric measures the percentage of executed statements a
developer must examine before encountering the faulty statement.

Although statistical debuggers are able to localize faults while incurring negligible
Cost for general-purpose software, they are not tailored to simulations. Continuous
numbers, which are common in most simulations, are ignored by existing statistical
debuggers because of (1) their relative scarcity in general-purpose software (2) and
the additional amount of space and time their analysis entails compared to their dis-
crete counterparts [Liblit 2008]. Furthermore, the use of random variates in stochastic
simulations defies the assumptions made by statistical debuggers that executions are
repeatable outcomes [Cleve and Zeller 2005; Jeffrey et al. 2008]. These factors result in
developers incurring significant Cost when employing existing statistical debuggers to
localize faults in simulations with (1) continuous numbers and/or (2) random variates.

In this work, we propose a statistical debugger—Exploratory Simulation Prediction
(ESP)—and evaluate the extent to which it reduces the Cost of localizing the statement
causing an unexpected output within simulations employing continuous numbers or
random variates. ESP is targeted toward simulation developers who work with general-
purpose programming languages; however, it is applicable to all developers provided
they have access to (1) the source code of their simulation and (2) a set of test inputs
paired with specified outputs to judge the correctness of the simulation.

The goal of ESP is to efficiently localize a source code statement within the simulation
causing the simulation to fail to produce the specified output for a given input. This
goal is related to, but not the same as, simulation validation, verification, and testing
(VV&T). In general, VV&T is concerned with identifying inputs where the simulation
does not produce the specified output [Sargent 2013]. ESP complements VV&T by then
localizing the source code statement causing the input(s) to fail to produce the specified
output. We review the relationship between ESP and VV&T further in Section 7.

The first research contribution within ESP, elastic predicates, is developed with
continuous numbers in mind. Most general-purpose applications are almost entirely
composed of discrete numbers and Boolean conditions. The values that these data types
take on are indicators where the sign distinguishes one outcome from another [Liblit
2008]. As a result, when existing statistical debuggers insert predicates into a subject
program’s source code, the predicates test if a variable value is greater than, less than,
or equal to zero.
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Although the approach is effective for discrete numbers and Boolean conditions,
it fails to capture some faulty value ranges taken on by continuous numbers. Elastic
predicates address this shortcoming by employing summary statistics such as the mean
and standard deviation to cluster together similar faulty values assigned to variables.
When combined with the predicates already employed in existing statistical debuggers,
elastic predicates reduce the Cost incurred by a simulation developer localizing the
statement, causing an unexpected output in the simulations featured in our evaluation.
Furthermore, we show that elastic predicates can be computed efficiently in terms of
space and time.

The second research contribution within ESP is the first analytical result concerning
many-valued, as opposed to Boolean, labeling functions for statistical debugging exe-
cution traces. Simulations are frequently employed to explore domains where physical
experimentation is impossible due to economic, moral, and ethical constraints. In these
cases, the expected output for a given test input is not known and thus impossible to
provide. Even if analytical solutions are used to provide the expected output, some
simulations include random variates and thus variance in their output. This creates at
least two difficult questions for developers tasked with localizing the statement causing
an unexpected output in simulations: (1) does an output have to match the analytical
solution exactly to be labeled as a passing execution trace? and (2) if not, how close
must the output of an execution trace be to the analytical solution to be considered
passing and to what extent?

Many-valued labeling functions provide a framework to answer these questions. They
enable a simulation developer to construct a function that specifies the extent to which
the output of an execution trace passes and fails. This relaxes the statistical debugging
requirement that execution traces must be labeled as strictly passing or failing. When
employed in existing statistical debuggers, many-valued labeling functions reduce the
Cost incurred by a simulation developer localizing the faulty statement, causing an
unexpected output in the simulations featured in our evaluation.

Combined elastic predicates and many-valued labeling functions change the simu-
lation debugging landscape. When featured in tandem, the two research contributions
enable simulation developers to inspect nearly 40% fewer program statements (on
average) than existing statistical debuggers for the 13 simulations with 69 different
faulty versions included in our evaluation. Furthermore, these improvements are not
only available in a perfect world, where (1) every statement is profiled all the time and
(2) thousands of inputs exist for every simulation. Our evaluation shows that using
sparse profiling and only 30 test inputs still enables simulation developers to inspect
approximately 33% fewer program statements (on average) than existing statistical
debuggers for the 13 simulations with 69 different faulty versions included in our
evaluation.

The rest of the article is organized as follows. Section 2 provides a background
of the inner workings of existing statistical debuggers, their utility, and deficiencies.
Section 3 elaborates on the methodology behind elastic predicates and many-valued la-
beling functions. An extensive evaluation of the Cost incurred by developers employing
elastic predicates and many-valued labeling functions compared to existing statistical
debuggers is presented in Section 4, followed by an evaluation of ESP in an imperfect
world in Section 5. A case study of ESP being employed in the wild and related work
are discussed in Sections 6 and 7. Finally, Section 8 concludes our study.

2. STATISTICAL DEBUGGING BACKGROUND

Examples help elucidate the inner workings, utility, and deficiencies of existing sta-
tistical debuggers. Section 2.1 demonstrates how statistical debugging is effectively
applied to isolate the fault in a small program used to compute the median of three
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Fig. 1. Statistical debugging example.

integers. In Section 2.2, a larger example uncovers the shortcomings of existing
statistical debuggers. The background provided in these sections motivates and en-
ables an understanding of our proposed simulation debugging improvements.

2.1. Inner Workings and Utility

Figure 1 shows the program, mid(), and its test suite. The program mid() takes three
integers as input and is required to output the median value. It could be a function
(1) programmed by a developer or (2) called by a library or package. Regardless of
its origin, the function fails to properly identify the median number for some inputs
because there is a fault in Statement 7. Statement 7 should read m = x; however, it
reads m = y.

Figure 1 illustrates the process of employing statistical debugging to localize this
fault. The debugger begins by executing mid() for each of the test inputs shown at
the top of the figure. The execution of mid for each test input is traced to record the
statements that are executed. The columns below the test inputs reflect each execution
trace: a black dot signifies that the statement was executed, and the lack of a black dot
signifies that the statement was not executed.

Once mid() is executed for a given test input, the actual output of the program is
compared to the specified output. The actual and specified outputs for each test input
are shown immediately below the execution trace. The actual output is written in italics
and the specified output is underlined. These outputs determine if the corresponding
execution trace is labeled as passing or failing. If the actual output matches the specified
output, then the execution trace passes; otherwise, it fails. The result of applying this
labeling process to each execution trace of mid() is shown in the bottom row of the figure.

Labeling each execution trace as passing or failing enables the suspiciousness and
rank of each statement in the source code of mid() to be computed. Recall that suspi-
ciousness measures how likely it is that a statement contains a fault. It is calculated by
computing the ratio of the number of failing execution traces that include the statement
to the number of total execution traces that include the statement. The suspiciousness
of each statement is shown in second right-most column of Figure 1.
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The right-most column of Figure 1 shows the rank of each statement. The ranking
column reflects the sorted order of the statements in mid() when they are returned
to the developer. The rank is the maximum number of statements that would have to
be examined by the developer. It is assumed that a developer examines all statements
with the same suspiciousness together.

In this figure, Statement 7 is identified as the most suspicious statement (.50) be-
cause it is only included in two execution traces: one that passes and one that fails.
Every other statement is included in at least two passing execution traces, and no state-
ment is included in more than one failing execution trace. As a result, Statement 7 is
returned first to a developer tasked with localizing the statement causing the failing
output mid(). It is expected that by isolating the statement, the developer will quickly
recognize the fault and correct the program. This is the appeal of statistical debugging.
It is capable of automatically limiting the number of statements that developers must
sort through in the debugging process.

In addition to profiling program statements, most statistical debuggers employ con-
ditional propositions, or predicates, to record the values assigned to variables in an
execution trace. For example, three predicates for every assignment statement in a
program are used to test if a value being assigned to a variable is greater than, less
than, or equal to zero. In the context of Statement 7 in the program mid(), the three
predicates used to test the the value of m are (m > 0), (m < 0), and (m = 0).

Although the decision to compare all variable values to zero via these predicates
may seem arbitrary, it is effective in general-purpose software. Most general-purpose
applications are almost entirely composed of discrete numbers andBoolean conditions.
The values that these data types take on are indicators where the sign distinguishes
one outcome from another [Liblit 2008].

The suspiciousness of these predicates is calculated in the same manner as the
suspiciousness of Statement 7. The addition of predicates enables statistical debuggers
to analyze the coverage of statements and values in execution traces. In theory and
practice, this has been shown to improve effectiveness [Liblit 2008].

2.2. Motivating Example

A larger simulation example uncovers the shortcomings of existing statistical debug-
gers and motivates the improvements that are possible. Figure 2 shows the source code
of the calc_new_infs() function in the implementation of a published SIR epidemic
disease spread model [Gordon 2003]. SIR epidemics divide a population into three
states: susceptible (S), infected (I), and recovered (R) [Gordon 2003]. At each timestep
in the simulation, the calc_new_infs() function is responsible for (1) calculating the
number of individuals who were newly infected, (2) calculating the number of individ-
uals who were newly recovered, and (3) initializing a data structure for each newly
infected individual.

The logic and use of random variates within the function is an example of a global
update in a stochastic, discrete-event simulation [Kelton 2007]. Statement 173 samples
a normal distribution centered at mean_infs with standard deviation sigma_infs to re-
turn the number of newly infected individuals. Next, Statement 174 updates the global
variable cur_infs_count, which tracks the number of currently infected individuals
in the population. Finally, Statement 177 places the index of the array infections
into the correct position to start initializing data structures for the newly infected
individuals, then statements 180 and 181 perform the initialization.

Here lies the occasionally triggered fault. The size of the infections array is set
to some large number when the simulation starts up and is not increased. How-
ever, because the number of new infections is sampled from a normal distribution,
with infinite tails, it is possible to draw an unbounded number of new infections.
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Fig. 2. The source code for the calc_new_infs() function in a published SIR model [Gordon 2003].

Recognizing that the number of new infections can overrun the statically sized array
reveals the fault. When the current number of infections becomes larger than the size
of the infections array (due to sampling a distribution with infinite tails), the variable
index is greater than the room available in infections and the program fails. Existing
statistical debuggers are unable to effectively identify this fault due to the reliance on
static predicates and the assumption that random variates will not be employed. We
elaborate on the random variate assumption in Section 2.2.1, then the deficiencies of
static predicates are addressed in Section 2.2.2.

2.2.1. Ineffectiveness for Stochastic Simulations. The output of the SIR simulation shown
in Figure 2 includes some natural random variance. A single test input can produce
slightly different values for the S, I, and R outputs over different executions, and the
resulting execution traces are not repeatable. This variance is programmed into the
simulation because it is exploratory in nature; the precise output for a given epidemic
test case is not exactly known. In contrast, in existing statistical debugging approaches,
the labeling of execution traces as passing or failing must be a Boolean function.
The disparity between the variance in the SIR simulation and the Boolean labeling
functions of existing debuggers creates at least two difficult questions for users tasked
with localizing sources of failures in these situations: (1) does an output from an
exploratory simulation have to match the analytical solution exactly to be labeled as a
passing execution trace? and (2) if not, how close must the output of an execution trace
be to the analytical solution to be considered passing and to what extent?

In practice, these questions are ignored entirely, analytical solutions are used as
specified outputs, and most execution traces are identified as failing. This profiling
process causes most statements to receive the same suspiciousness scores, and the
resulting statement rankings incur a significant Cost for simulation developers.
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Section 3.2 presents an approach inspired by fuzzy logic that enables an execution
trace from a simulation employing random variates (i.e., Figure 2) to be labeled as
passing and failing. The approach many-valued labeling functions removes the re-
quirement that the user must construct a Boolean labeling function. Instead, many-
valued labeling functions allow a user to construct a continuous function specifying the
extent to which the output of an execution trace passes and fails. Employing many-
valued labeling functions enables statistical debuggers to yield statement rankings
that incur negligible Cost for simulation developers localizing faults within stochastic
simulations.

2.2.2. Deficiencies of Static Predicates. Even if the variance from the SIR simulation
is removed, existing statistical debuggers still struggle to identify the fault shown
in Figure 2. Recall that existing statistical debuggers employ three predicates that
partition the values assigned to each variable x in a statement y around zero: (xy > 0),
(xy = 0), and (xy < 0). These predicates are referred to as being static, because they
are selected before the simulation is executed for any of the supplied test inputs. They
assume that the faulty program is largely composed of discrete variables used to encode
indicators. Unfortunately, this is not true for most simulations, including the one shown
in Figure 2. Almost all of the values assigned to the variables in calc_new_infs() are
greater than zero and satisfy the same static predicate for each statement, (xy > 0). As
a result, the predicates do not effectively localize the fault.

The elastic predicates presented in Section 3.1 do not assume that variables within a
simulation are used as indicators. Instead, elastic predicates adapt to variable values
profiled during test execution to cluster together similar values and create predicates
that better localize faults in simulations. This approach guarantees that all of the
values assigned to a given xy will not satisfy the same predicate. Many-valued labeling
functions and elastic predicates are elaborated on further in Section 3.

3. EXPLORATORY SIMULATION PREDICTION

Two research contributions within our statistical debugger, ESP, enable more effec-
tive fault localization for simulations than existing alternatives: elastic predicates
and many-valued labeling functions. We elaborate on each contribution in the fol-
lowing. Section 3.1 discusses the philosophy behind elastic predicates and how they
are realizable in practice. Then, Section 3.2 describes how fuzzy logic inspires many-
valued labeling functions that can categorize a statistical debugging execution trace as
both passing and failing and why this enables Cost-effective statistical debugging for
stochastic simulations.

3.1. Elastic Predicates

Although statistical debuggers employing static predicates have been shown to be
effective for a variety of general-purpose software applications, they have done so
by ignoring continuous numbers. As a result, they can be improved for simulations
that employ continuous numbers or discrete numbers to encode more than signals.
Elastic predicates offer such an improvement. Unlike their static counterparts, elastic
predicates adapt to profiled variable values to create predicates that better localize
faults in simulations.

Given a measure to score suspiciousness, a maximized elastic predicate identifies the
values assigned to a variable x in a statement y (denoted xy) that maximize the sus-
piciousness of the predicate. These maximized elastic predicates are the most effective
predicates for fault localization, because each predicate is constructed to identify the
most suspicious range of values assigned to each xy [Liblit 2008].
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Unfortunately, generating maximized elastic predicates is impractical. First, they
require all of the values assigned to each xy to be stored and sorted. For many subject
programs, the space required to store all of the values assigned to each xy will exceed
the space available on a modern workstation. Furthermore, for most subject programs,
sorting the assigned values to each xy cannot be performed quickly enough to make the
resulting maximized elastic predicate useful.

However, other elastic predicates that can be computed efficiently in terms of time
and space are realizable. The elastic predicates presented in this section use summary
statistics such as the mean, μxy , and standard deviation, σxy , of the values assigned to
a variable xy to cluster together similar values.

The use of summary statistics to compute elastic predicates is not an arbitrary
choice. Summary statistics enable the resulting elastic predicates to be computed in
an online manner, which avoids any need to store each value assigned to each xy
[Knuth 1997]. Furthermore, because the summary statistics capture the dispersion
of variable values without requiring sorting or optimization routines, the predicates
can be computed efficiently. Although elastic predicates based on summary statistics
do not maximize the suspiciousness score of each predicate, the results presented in
Sections 4 and 5 show they offer significant improvements in effectiveness over the
existing alternatives.

Numerous approaches have been proposed to identify predicates that are good failure
predictors [Liblit 2008]. The most effective of these approaches analyze variable values
within a program. We use two elastic predicate schemes that employ summary statistics
such as the mean and standard deviation to analyze variable values. In Section 3.1.1,
the elastic single variable scheme uses the mean, μxy , and standard deviation, σxy , of the
values assigned to a variable x in a statement y to cluster together similar values.
Then, in Section 3.1.2, the scalar pairs scheme is presented. The scheme considers
the difference between the value of xy and another in scope similarly typed variable
q in statement i to capture the relationships among multiple variables that cannot
be detected by the single variable scheme. The elastic scalar pairs scheme uses the
mean, μxy−qi , and standard deviation, σxy−qi , of the difference between the value of xy
and qi to create partitions that cluster together differences that are similar. Finally, in
Section 3.1.3, we return to the motivating example shown in Figure 2 and demonstrate
the improvement that elastic predicates offer.

3.1.1. Single Variable. The single variable scheme partitions the set of possible values
that can be assigned to a variable x in a statement y. In most debuggers, three static
predicates are employed to partition the values for each xy: (xy > 0), (xy = 0), and
(xy < 0). Recall that these three predicates are static because the decision to compare
the value of xy to 0 in each of these predicates is made before the subject program
has been executed for any test inputs. Zero is the value chosen for comparison because
the sign of a discrete variable is frequently an indicator of the success or failure of
an event in general-purpose software applications. Work with automated debugging
in the HOLMES project has shown that this is a particularly poor choice for double-
precision and floating-point type variables where inevitable numerical analysis errors
significantly degrade the value of a comparison to zero [Chilimbi et al. 2009].

In contrast, the nine elastic predicates presented in Table I use summary statistics
of the values assigned to xy during execution to create partitions that cluster together
values that are a similar distance and direction from μxy . The decision to use nine
elastic predicates to partition the values assigned to variable x in statement y for
three standard deviations (σxy) above and below the mean (μxy) is deliberate. This
partitioning has been effective to capture the normal dispersion of data for many
problems in numerous domains [Bryc 1995]. Furthermore, the partitioning addresses

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 3, Article 16, Publication date: April 2015.



Statistical Debugging for Simulations 16:9

Table I. Fundamental Single Variable
Elastic Predicates

xy > (μxy + 3σxy )
(μxy + 3σxy ) ≥ xy > (μxy + 2σxy )
(μxy + 2σxy ) ≥ xy > (μxy + σxy )
(μxy + σxy ) ≥ xy > μxy

μxy = xy

(μxy − σxy ) ≤ xy < μxy

(μxy − 2σxy ) ≤ xy < (μxy − σxy )
(μxy − 3σxy ) ≤ xy < (μxy − 2σxy )
xy < (μxy − 3σxy )

Table II. Fundamental Scalar Pairs Elastic Predicates

xy − qi > (μxy−qi + 3σxy−qi )
(μxy−qi + 3σxy−qi ) ≥ xy − qi > (μxy−qi + 2σxy−qi )
(μxy−qi + 2σxy ) ≥ xy − qi > (μxy−qi + σxy−qi )
(μxy−qi + σxy−qi ) ≥ xy − qi > μxy−qi

μxy−qi = xy − qi

(μxy−qi − σxy−qi ) ≤ xy − qi < μxy−qi

(μxy−qi − 2σxy−qi ) ≤ xy − qi < (μxy−qi − σxy−qi )
(μxy−qi − 3σxy−qi ) ≤ xy − qi < (μxy−qi − 2σxy−qi )
xy − qi < (μxy−qi − 3σxy−qi )

the failings of static predicates for double-precision and floating-point variables where
comparison to zero is not useful [Chilimbi et al. 2009].

3.1.2. Scalar Pairs. Multiple variables within a program can have important relation-
ships that cannot be captured with a single variable scheme. Work on the Daikon
project has shown that it is useful to identify and capture the relationships among
multiple variables with simple and implicit invariants that aid program evolution and
program understanding [Ernst et al. 2001]. Similarly, statistical debuggers capture im-
portant relationships among multiple variables by identifying invariants that are only
violated when the subject program fails. The scheme that captures these invariants is
the scalar pairs scheme [Liblit 2008].

In the static scalar pairs scheme, at each assignment to a variable x in a statement
y, all other in-scope, same-typed local or global variables q1, q2, . . . , qi, . . . , qn are
identified. For each pair of variables, the static scalar pairs scheme compares the
difference of a new value for xy and the existing value of qi to zero: (x − qi >0), (xy − qi
= 0), (xy − qi < 0).

In contrast, the nine scalar pair elastic predicates presented in Table II use summary
statistics of the difference between the new value of xy and the existing value of qi
to create partitions that cluster together differences that are a similar distance and
direction from μxy−qi .

3.1.3. Revisiting the Motivating Example with Elastic Predicates. The utility of a statistical
debugger is determined through experimental evaluation. However, one can begin to
appreciate the improvements offered from elastic predicates by applying them to the
motivating example that we presented in Section 2.2.

Recall that even if we fixed the seed of each random variate in the SIR simulation
shown in Figure 2, the fault is still difficult to localize with static single variable
predicates. The difficulty is created because almost all of the values assigned to the
variables in the function satisfy the predicate (xy > 0). However, the single variable
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Table III. The Top-Ranked Predicates for Figure 2

Filename Elastic/Static Function Predicate
sir.c Elastic calc_new_infs() index180 > (μindex180 + 3σindex180 )
sir.c Static calc_new_infs() cur inf s count174 > 0

elastic predicates in Table I avoid this problem. Profiling the values assigned to each xy
during execution creates partitions that ensure only similar variable values, in terms
of distance and direction from the mean, satisfy the same predicate.

The most suspicious static predicate and the most suspicious elastic predicate for
the calc_new_infs() function are shown in Table III. The predicates and their sus-
piciousness estimates are computed using 4,000 randomly generated, valid test in-
puts to the SIR simulation. Table III shows that the elastic predicate (index180 >
(μindex180 + 3σindex180 )) clusters together unusually large values assigned to the variable
index in Statement 180 and captures the fault. The predicate suggests that failures
frequently occur when the parameters supplied to the calc_new_infs() function gen-
erate an unusually large number of infected individuals. Specifically, failures occur
when the infections array does not have room for the number of generated infected
individuals and their corresponding data structures. The location of the fault and the
cause of the failure are clear after identification and explanation. However, this fault
was present and undiscovered in the simulation for several years [Gore 2012].

In contrast to the top-ranked elastic predicate, no single variable static predicates are
particularly suspicious. The most suspicious single variable static predicate suggests
that some values assigned to the variable cur_infs_count in statement 174, which are
greater than zero, cause the program to fail. Although the suggestion is correct, it does
not lead the developer to the location or the direct cause of the fault. The top-ranked
elastic predicate does.

This example showcases the opportunity to improve statistical debuggers by aug-
menting them with elastic predicates. However, combining the elastic predicates with
the many-valued labeling functions described in Section 3.2 enables further improve-
ments to an even larger class of simulations.

3.2. Many-Valued Labeling Functions

Simulations are frequently employed to explore domains where physical experimenta-
tion is impossible due to economic, moral, and ethical constraints. In these cases, the
expected output for a given test input is not known and thus impossible to provide.
Even if analytical solutions are used to provide the expected output, some simulations
include random variates and thus variance in their output.

For example, we generated 4,000 random valid test inputs to the SIR simulation
shown in Figure 2, and despite many execution traces approaching their analytical
solution, none of the traces matched it. As a result, each of the execution traces was
labeled as failing, all of the program statements were given the same suspiciousness
score, and the Cost required to debug the simulation shown in Figure 2 was over-
whelming. This example reveals the debilitating nature of the statistical debugger
requirement that a set of test inputs, corresponding execution traces, and a labeling of
the execution traces as passing or failing be provided by the user.

Here we present many-valued labeling functions that provide a framework to relax
this requirement. Many-valued labeling functions enable each SIR execution trace
to both pass and fail to a given extent. This removes the requirement that the user
must construct a Boolean function to label the output of an execution trace as either
strictly passing or failing. As a result, many-valued labeling functions enable different
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program statements to receive different suspiciousness scores generating a ranked list
of program statements that incur significantly less Cost for simulation developers.

3.2.1. Formal Definition. Our many-valued labeling functions assume that the output
of a program is (or can easily be transformed to) some ordered, separate, set of real
numbers. This is typical of most simulations. This set is referred to as the output list,
X. The passing extent, u, of the output list, X, is computed using Equation (1):

u =

⎛
⎜⎜⎜⎜⎜⎝

|X|∑
i=1

Wi fi(Xi)

|W |∑
i=1

Wi

⎞
⎟⎟⎟⎟⎟⎠

where fi : R → [0, 1] and |W | = |X|. (1)

In Equation (1), W is an ordered list of weights, which focuses attention on partic-
ular parts of the output list. The functions fi encode information about the specified
(or passing) output and the tolerance for deviation from that output. Note that f (X) is
separable into fi(Xi) due to our assumption that the output of a program is an ordered,
separated, set of real numbers. The passing extent u reflects the extent to which exe-
cuting and tracing the simulation for a single test input produces the specified output.
Similarly, the complement of the passing extent, the failing extent (1.0 − u), reflects
the extent to which executing and tracing the simulation for a single test input does
not produce the specified output.

The sum of the failing extent of every execution trace that includes a given predicate
or statement in the test suite reflects the total number of failing execution traces
for that predicate. This sum and the total number of execution traces including the
statement or predicate are used to compute suspiciousness. Recall that suspiciousness
is calculated by computing the ratio of the number of failing execution traces that
include the statement (or predicate) to the number of total execution traces that include
the statement (or predicate).

3.2.2. Backward Compatibility. Many-valued labeling functions are a continuous general-
ization of Boolean labeling functions. This means that although they do not guarantee
improvements in the effectiveness of statistical debuggers for stochastic simulations,
they can reproduce the results of Boolean labeling functions. This backward compati-
bility is described next.

Consider a simulation where the output for each execution trace is mapped to a
single real number X, and the passing output for the execution trace is the real number
Xpass. The delta function function, f (x) = δXpass (X), will separate execution traces that
pass (u = 1) from execution traces that fail (u = 0). The choice of f (x) is important:
δXpass (X) = 1 if X exactly matches Xpass; otherwise, δXpass (X) = 0.

3.2.3. Choosing the Appropriate Many-Valued Function. Ultimately, choosing the functions
for the passing/failing extent for the execution traces of a faulty simulation is a nontriv-
ial problem. Currently, it entirely depends on the simulation developer. The examples
discussed in Section 4.1.1 and our case study in Section 6 serve as possible templates
for users to pursue, but we cannot provide a one-size-fits-all solution. However, the
evaluation in Section 4 shows that the many-valued formalism allows a choice that
can outperform the Boolean function used to label passing and failing execution traces
in existing statistical debugging approaches. Furthermore, although many-valued la-
beling functions do not guarantee improvements, Section 3.2.2 shows that they can
reproduce the results of the existing Boolean functions used to label passing and fail-
ing execution traces. This ensures that ESP, which employs many-valued labeling
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Table IV. Subject Programs Used in the Evaluation of Elastic Predicates

Number of Versions Used /
Name Number of Versions LoC Number of Tests Description
schedule 9/9 292 2,710 Priority scheduler
scheule2 9/10 301 2,650 Priority scheduler
tcas 41/41 141 1,608 Altitude separator

bates 1/1 8,184 298 Options pricing model
heston 1/1 4,095 316 Options pricing model
mc euro 1/1 835 242 Options pricing model
um-olsr 1/1 14,433 176 Network protocol simulator
ns2 1/1 11,258 293 Network simulator
g/g/1 1/1 2,247 3,000 Queuing simulation
m/m/c 1/1 3,302 3,000 Queueing simulation
mmpp/d/1 1/1 3,860 3,000 Queueing simulation
ising 1/1 875 3,000 Physics simulation
sir 1/1 5,892 4,000 Disease spread simulation

functions reasonably, will not be outperformed by existing statistical debuggers, which
do not.

4. EVALUATION

The utility of a fault localization approach is determined through experimental eval-
uation. In this section, a thorough evaluation of the effectiveness and the efficiency
of elastic predicates and many-valued labeling functions is presented. Sections 4.1
and 4.2 describe the subject simulations and fault localization approaches included in
the evaluation. The effectiveness of the approaches is evaluated in Section 4.3. Then,
the efficiency of all approaches is presented in Section 4.4.

4.1. Subject Simulations

We include 13 subject simulations in our evaluation, yielding a total of 69 different
faulty versions. The simulations include three adapted fault localization benchmarks
(schedule, schedule2, tcas) and 10 widely used simulations with actual faults ob-
served in the wild (sir, ising, bates, heston, mc euro, um-olsr, ns2, g/g/1, m/m/c and
mmpp/d/1).

Table IV shows the characteristics of the subjects. For each subject, the first column
gives the simulation name, the second column provides the ratio of the number of
versions used to the number of versions available, the third column gives the number
of lines of code for the subject, the fourth column gives the number of tests, and the last
column provides a description. One of the faulty versions of the schedule2 simulation
did not contain syntactic differences between the correct version and the faulty version.
As a result, this version was omitted from the evaluation.

4.1.1. Adapted Benchmarks. The three established benchmarks included in the evalua-
tion suite are common objects of analysis in the statistical debugging community. Each
benchmark contains a number of faulty versions with a set of test inputs and expected
outputs for each version. In this evaluation, we adapted the benchmarks to include
random variates. For the tcas program, the values of constants are sampled from a
uniform distribution where the minimum value is half of the value of the constant and
the maximum value is one and a half the value of the constant.

In the two priority schedulers (schedule and schedule2), the programs are modified
to include arrival and service times drawn from a normal distribution for each process.
The unmodified test inputs for these programs dictate the order in which processes are
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Table V. The Many-Valued Labeling Function Used for tcas Test Cases

Expected Output Faulty Version Output Passing Extent (u) Failing Extent (1.0 − u)
0 0 1.0 0.0
0 1 0.5 0.5
0 2 0.0 0.0
1 0 0.5 0.5
1 1 1.0 0.0
1 2 0.5 0.5
2 0 0.0 1.0
2 1 0.5 0.5
2 2 1.0 0.0

scheduled in the queue. Our modifications represent the uncertainty of measurements
often used in simulations that create variance in program output. However, each faulty
version of each program contains the same faults and same inputs as the original
faulty version in the benchmark. These programs were chosen because straightforward
adaptations could be made to create simulations that featured (1) some variance in the
output and (2) faults from an established set of benchmarks.

The Traffic Collision Avoidance System, tcas, monitors an aircraft’s airspace and
warns pilots of possible collisions via three different outputs: (0) adjust the trajectory
of the aircraft downward, (1) do not adjust the trajectory of the aircraft, or (2) adjust
the trajectory of the aircraft upward. For the approaches employing Boolean labeling
functions, a test case for a faulty version of tcas passes if it directly matches the output
that was specified for the deterministic version of the tcas program. For the approaches
employing many-valued labeling functions, the function, f , shown in Table V is em-
ployed. The function shown in Table V does not consider an execution trace to fully
fail unless it drastically differs from the specified output. This occurs when a faulty
version instructs the pilot to (a) adjust the trajectory of the aircraft downward when
an upward adjustment is specified or (b) adjust the trajectory of the aircraft upward
when a downward adjustment is specified.

Although Table V shows a many-valued labeling function for three outcomes, its
structure can be extended to any simulation with a finite number of expected outcomes.
Example simulations with an infinite number of expected outcomes are discussed in
Section 4.1.2 and in our case study in Section 6.

The output of the two scheduling benchmarks (schedule and schedule2) is a list of
the identification numbers of processes in the order they exit the system. For the ap-
proaches employing Boolean labeling functions, a test case passes if the ordered output
of the faulty version exactly matches the ordered output specified for the test case. If
this is not true, then the test case fails. However, for the approaches employing many-
valued labeling functions, the Levenshtein distance between the ordered output of the
faulty version and the ordered output specified for the test case serves as the labeling
function. The Levenshtein distance between the output and the specified output is the
minimum number of edits needed to transform one list of process identification num-
bers into the other, where the edit operations are insertion, deletion, or substitution of
process identification numbers [Navarro 2001].

4.1.2. Widely Used Simulations. Each of the widely used simulations contains one fault
that reflects a documented error that has been observed by subject matter experts
(SMEs). For example, the Bates stochastic volatility jump-diffusion pricing simula-
tion (bates) must be calibrated to previous data before it is employed to make price
predictions for the future. However, if the absolute price error is minimized during cal-
ibration instead of the relative price error, the simulation produces an error [Detlefsen
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and Hardle 2007]. Similarly, the implementation of the Heston stochastic volatility
simulation (heston) reflects documented issues in the computation of the logarithms
for complex numbers [Mikhailov and Nögel 2003]. The pricing simulation of European
barrier options (mc euro) contains an error in computation of bank offering rates [Boyle
and Lau 1994]. The um-olsr protocol used with the ns2 network simulator contains a
documented (and now patched) error in the degree method [Ros 2007]. In the 2.19b
version of the ns2 network simulator, which can be used to simulate bandwidth usage
for implementations of the TCP protocol, there is a fault that incorrectly tracks the
number of nodes in the network [Issariyakul and Hossain 2011].

The three queueing simulations included in the evaluation each contain published
faults related to the misuse of uncertainty [Kelton 2007] (each of these simulations
is described further in Gross et al. [2011]). The first is a g/g/1 queueing simulation
employing a normal distribution (with infinite tails) when a hump-shaped distribution
with values strictly greater than zero is intended. The second is a m/m/c queueing
simulation with a misused Poisson distribution. The third is a mmpp/d/1 queueing
simulation with an incorrectly bound loop due to the misuse of a random variate.

The last two simulations included in the evaluation are sir and ising. The sir sim-
ulation and its fault are discussed in depth in Section 2.2. Finally, the ising simulation
is a Monte Carlo implementation of the canonical Ising model used in physics [Brush
1967]. However, it does not take the absolute value of the magnetization of each spin
creating a fault.

Established analytical solutions for each of these simulations exist in published re-
search. However, recall even if analytical solutions are used to provide the expected
output, random variates in simulations create variance in their output, rendering tradi-
tional statistical debuggers largely ineffective. Here we use these analytical solutions
to parameterize a many-valued passing function, f , for all of the simulations. The
function f is a bell curve centered on the analytical solution, x̄, for the test inputs that
accompany each simulation. Formally, f is exp(−(x − x̄)2/a2), where a is the tolerance
for deviation. We use a = 1.0, and the extent to which each execution trace matches its
specified output of f is reflected by the variable, u. Similarly, the extent to which each
execution trace fails is 1.0 − u.

4.1.3. The Nature of the Faults. All of the faults included in the subject simulations
are computation related as opposed to memory related. These faults reflect operator
and operand mutations, missing and extraneous code, and constant value mutations.
For simulation versions with a faulty constant assignment statement, the assignment
statement is considered to be examined by a developer when it is directly examined
or when a statement explicitly using the constant is examined. Second, for simulation
versions where the fault reflects a missing statement, statements directly adjacent to
the missing code qualify as the missing statement. These issues are handled the same
way in other published research in the statistical debugging community [Jones and
Harrold 2005; Jeffrey et al. 2008].

4.2. Competing Approaches

Three different general approaches to fault localization are featured in the evalua-
tion: Cooperative Bug Isolation (CBI), ESP, and Tarantula. However, for each general
approach, a version that employs (1) Boolean labeling functions and (2) many-valued
labeling functions is included. The versions employing many-valued labeling functions
are referred to as being fuzzy to distinguish them from their traditional counterparts.
Here we summarize the similarities and the differences of the strategies employed in
the six approaches included in our evaluation.

4.2.1. Cooperative Bug Isolation. In the evaluation, CBI is employed with the static single
variable and static scalar pairs predicates described in Sections 3.1.1 and 3.1.2. The
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suspiciousness of a predicate is calculated by computing the ratio of failing execution
traces that cover a predicate to total execution traces that cover the predicate. Given
a list of CBI predicates ranked by suspiciousness, program statements are ranked
according to the following:

(1) For each statement, stmt, identify the corresponding predicate with the highest
suspiciousness score, stmthigh.

(2) Move the statement, stmt, and highest suspiciousness score, stmthigh, to set ST.
(3) Rank the statements in ST in descending order by suspiciousness score.

4.2.2. Fuzzy CBI. In the traditional version of CBI, a Boolean decision is made as to
whether or not an execution trace is labeled as passing or failing. This decision entirely
hinges on whether the output of an execution trace exactly matches what is specified
for the test input.

However, in the fuzzy version of CBI, the extent, u, to which an execution trace
is labeled passing is determined by a many-valued function. Accordingly, predicate
suspiciousness is determined by (1) summing the failing extent (1.0 – u) for every
execution trace that covers the predicate and (2) computing the ratio of that sum and
the total number of execution traces that cover the predicate. Fuzzy CBI and CBI
employ the same predicates and rank them in the same manner.

4.2.3. Exploratory Simulation Prediction. The predicates employed in ESP are a superset
of those employed in CBI. Along with the static single variable and static scalar pairs
predicates employed in CBI, ESP also employs the elastic single variable and the elastic
scalar pairs predicates described in Sections 3.1.1 and 3.1.2. The suspiciousness and
ranking of these predicates is computed in the same manner as in CBI.

4.2.4. Fuzzy ESP. The predicates employed in fuzzy ESP are they same as those em-
ployed in ESP. The labeling of execution traces, the suspiciousness of predicates, and
the ranking of the program statements in fuzzy ESP are computed in the same manner
as they are in Fuzzy CBI.

4.2.5. Tarantula. In contrast to the predicative-level statistical debuggers CBI and ESP,
Tarantula is a statement-level statistical debugger. A detailed description of how Taran-
tula works is presented in Figure 1. For a given statement, Tarantula profiles the
number of failing execution traces that cover the statement and the total number of
execution traces that cover the statement. The suspiciousness score of the statement
is calculated by computing the ratio of failing execution traces to the total execution
traces. Execution traces are labeled as passing or failing using Boolean functions in
Tarantula, just as they are in the traditional versions of CBI and ESP. Program state-
ments are ranked in descending order of suspiciousness [Jones and Harrold 2005].

4.2.6. Fuzzy Tarantula. In this version of Tarantula, many-valued passing functions
are used to determine the extent, u, to which an execution trace passes or fails for a
given test input. Statement suspiciousness is determined by (1) summing the failing
extent (1.0 – u) of every execution trace that covers the statement and (2) computing
the ratioof the sum and the total number of execution traces where the statement is
covered. Statements are ranked in the same manner as Tarantula.

4.3. Effectiveness

To study the effectiveness of employing elastic predicates and many-valued labeling
functions in the approaches described in Section 4.2, a version of the established metric
Cost is employed [Jones and Harrold 2005; Jeffrey et al. 2008]. Given a ranked set of
statements, Cost measures the percentage of executed statements that a developer
must examine before encountering the faulty statement. If there are ties, it is assumed
that the developer must examine all of the tied statements. For example, if there are n
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Table VI. Number (Percentage) of Faulty Version Ranked Statement Lists
in Each Score Range for All Approaches

Fuzzy
Tarantula Tarantula CBI Fuzzy CBI ESP Fuzzy ESP

Cost # (%) Sims # (%) Sims # (%) Sims # (%) Sims # (%) Sims # (%) Sims
0%–1% 1 (1.44%) 3 (4.34%) 3 (4.34%) 7 (10.14%) 4 (5.80%) 9 (13.04%)
1%–10% 5 (7.25%) 15 (21.73%) 7 (10.14%) 22 (31.88%) 9 (13.04%) 26 (37.68%)

10%–20% 7 (10.14%) 12 (17.39%) 10 (14.44%) 10 (14.44%) 11 (15.94%) 10 (14.44%)
20%–30% 7 (10.14%) 6 (8.69%) 8 (11.59%) 6 (8.69%) 8 (11.59%) 5 (7.25%)
30%–40% 11 (15.94%) 7 (10.14%) 9 (13.04%) 4 (5.80%) 9 (13.04%) 4 (5.80%)
40%–50% 7 (10.14%) 7 (10.14%) 7 (10.14%) 5 (7.25%) 9 (13.04%) 3 (4.34%)
50%–60% 8 (11.59%) 5 (7.25%) 7 (10.14%) 3 (4.34%) 7 (10.14%) 3 (4.34%)
60%–70% 9 (13.04%) 5 (7.25%) 8 (11.59%) 4 (5.80%) 4 (5.80%) 2 (2.89%)
70%–80% 6 (8.69%) 3 (4.34%) 4 (5.80%) 3 (4.34%) 3 (4.34%) 3 (4.34%)
80%–90% 4 (5.80%) 3 (4.34%) 3 (4.34%) 3 (4.34%) 3 (4.34%) 2 (2.89%)
90%–100% 4 (5.80%) 3 (4.34%) 3 (4.34%) 2 (2.89%) 2 (2.89%) 2 (2.89%)

Fig. 3. Evaluation of the effectiveness of many-valued labeling functions and elastic predicates. Higher and
farther to the left is better.

executed statements in a program and all n statements have the same suspiciousness
score, it is assumed that the developer must examine all n statements. A lower score
is preferable, because it means that fewer statements must be considered before the
faulty statement is found. Due to the variance in the output of the simulations used in
the evaluation, a version of Cost that reflects the average Cost of localizing the fault in
the simulation over 100 different trials is used. This cost metric is referred to as Cost.

The effectiveness of employing elastic predicates and many-valued labeling functions
in the approaches included in the evaluation for the subject simulations is shown in
Table VI. Each row in Table VI shows a Cost range and the number (and percentage) of
subjects for each approach that incur the specified Cost. Figure 3 provides a graphical
view of this data. In this figure, the x-axis represents the lower bound of each Cost
range, and the y-axis represents the percentage of subjects where a Cost less than or
equal to the upper bound is incurred. This presentation of data follows the established
convention in the statistical debugging community [Jones and Harrold 2005; Jeffrey
et al. 2008].
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4.3.1. CBI and Fuzzy CBI. Fuzzy CBI performs better than CBI for the simulations
included in the evaluation. There are only 2 out of the total 69 faulty simulation
versions where Fuzzy CBI assigned a lower rank to the statement containing the fault
than CBI. In these versions, the many-valued labeling functions used to calculate the
suspiciousness scores do not localize the faulty statement as well as their traditional
counterparts. These are outlying data points in the evaluation (<3% of all faulty ver-
sions). For most of the faulty versions, the many-valued labeling functions used to
label execution traces as passing or failing in Fuzzy CBI lead to more effective fault
localization. Furthermore, for the two versions where CBI outperforms Fuzzy CBI, the
faults in the versions reflect missing code. Other published attempts to improve the
effectiveness of statistical debuggers have failed to localize these types of faults well
[Baah et al. 2011].

Overall, the traditional version of CBI struggles in this portion of the evaluation.
It employs static predicates, and as a result many values assigned within the simu-
lations satisfy the same predicates. This hurts the approach. ESP does not fall victim
to the same problem because of the elastic predicates that it employs. Furthermore,
the variability in the output of the simulations results in CBI classifying significantly
more execution traces as failing than does Fuzzy CBI. The combination of static pred-
icates and a plethora of failing execution traces results in all of the predicates being
assigned the same or very similar suspiciousness scores. These similarities and ties
in suspiciousness result in poor Cost scores because very few predicates are separated
from the masses.

4.3.2. ESP and Fuzzy ESP. The results of the evaluation for ESP and Fuzzy ESP are en-
couraging. They enable ESP to outperform CBI and Fuzzy ESP to significantly outper-
form Fuzzy CBI. However, the relative difference between ESP’s performance against
CBI and Fuzzy ESP’s performance against Fuzzy CBI deserves further investigation.
The traditional version of ESP classifies significantly more test cases as failing than
does Fuzzy ESP. As a result, some of the elastic predicates in the traditional version
of ESP are assigned the same or similar suspiciousness score, just as were the static
predicates in CBI. Ultimately, the predicates with the same suspiciousness scores ren-
der traditional ESP less effective than Fuzzy ESP. However, it is still important to
note than when comparing the nonfuzzy implementations, ESP outperforms CBI by a
noticeable margin, and when comparing Fuzzy ESP to Fuzzy CBI the margin of victory
is significant.

4.3.3. Fuzzy Tarantula. Fuzzy Tarantula also outperforms its traditional counterpart in
the evaluation. Recall that both versions of Tarantula only profile statement coverage
data as opposed to the traditional and fuzzy versions of ESP and CBI, which employ
predicates to profile variable values. As a result, the traditional version of Tarantula is
less effective than the traditional version of ESP or CBI. In addition, the fuzzy version
of Tarantula is less effective than the fuzzy version of ESP or CBI.

It is important to note the particularly poor performance of the traditional Tarantula
approach in this portion of the evaluation. The performance of Tarantula is worse than
the expected performance of a simple-minded approach to fault localization, which
takes all statements included in failing execution traces and ranks them in a random
order. Such an approach would be expected to localize faults in the same percentage of
faulty versions as the Cost incurred. For example at a Cost of searching through 50%
of the source code in each of the faulty versions, the simple-minded approach would be
expected to localize faults in 50% of the faulty versions. Similarly, at a Cost of searching
through 30% of the source code of the faulty versions, it would be expected to localize
faults in 30% of the faulty versions.
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Table VII. Average Wallclock Time (in Seconds) Required by Each Approach to Execute All
Faulty Versions of the Specified Subject Program over 100 Trials

CBI ESP Tarantula
Name (Traditional/Fuzzy) (Traditional/Fuzzy) (Traditional/Fuzzy)
schedule 757/707 ∼ (1.07) 2,088/2,039 ∼ (1.02) 81/30 ∼ (2.7)
scheule2 658/610 ∼ (1.07) 2,077/2,030 ∼ (1.02) 79/30 ∼ (2.63)
tcas 186/183 ∼ (1.01) 864/861/864 ∼ (1.00) 15/12 ∼ (1.25)
bates 579/564 ∼ (1.02) 2,331/2,293 ∼ (1.01) 49/35 ∼ (1.4)
heston 984/961 ∼ (1.02) 3,984/3,941 ∼ (1.01) 68/56 ∼ (1.21)
mc euro 648/626 ∼ (1.03) 2,681/2,624 ∼ (1.01) 49/40 ∼ (1.22)
um-olsr 1,746/1,728 ∼ (1.01) 1,825/1,802 ∼ (1.01) 41/30 ∼ (1.37)
ns2 1,327/1,285∼ (1.03) 5,891/5,857 ∼ (1.00) 92/80 ∼ (1.15)
g/g/1 369/353 ∼ (1.03) 1,562/1,545 ∼ (1.01) 34/23 ∼ (1.48)
m/m/c 319/307 ∼ (1.04) 1,346/1,328 ∼ (1.01) 26/18 ∼ (1.44)
mmpp/d/1 462/449 ∼ (1.02) 2,322/2,284 ∼ (1.01) 42/29 ∼ (1.44)
sir 626/604 ∼ (1.04) 2,602/2,561 ∼ (1.01) 53/38 ∼ (1.39)
ising 346/328 ∼ (1.05) 1,303/1,285 ∼ (1.01) 27/21 ∼ (1.29)

The traditional version of Tarantula does not outperform the simple-minded ap-
proach because there are no ties in terms of suspiciousness estimates in the ranked list
of statements in the simple-minded approach. In the traditional version of Tarantula,
ties occur frequently in a ranked list of statements in this portion of the evaluation
because many execution traces are classified as failing. Since the Cost metric requires
all tied statements to be examined before the fault is considered to be localized, the
effectiveness of Tarantula in this portion of the evaluation is particularly poor.

4.3.4. Overall Effectiveness. The demonstrable improvement in performance of the fuzzy
version of each traditional debugger is significant. Without many-valued labeling func-
tions, statistical debugging incurs so much Cost that it is inapplicable to simulations
where a Boolean determination of passing and failing cannot be made. However, by
enabling users to specify many-valued labeling functions for these simulations, the
effectiveness of the fuzzy debuggers approaches that of their traditional counterparts
when applied to general-purpose software. Ultimately, many-valued labeling functions
enable statistical debugging to be applicable to an entire set of simulations where
previously users had no alternative for automatic fault localization.

4.4. Efficiency

Here, the efficiency of the elastic predicates and many-valued labeling functions em-
ployed in the evaluation is analyzed. Table VII shows the average wallclock time for
ranking the statements for each faulty version of the subjects. The Slowdown incurred
by employing many-valued labeling functions for each general approach is shown in
parentheses. Slowdown is calculated by computing the ratio of the fuzzy runtime to
the traditional runtime.

4.4.1. Elastic Predicates. The generation and analysis of elastic predicates in ESP (fuzzy
and traditional) does not create constant overhead in terms of execution time, but the
additional time required to employ the elastic predicates is never greater than five
times the execution time of static predicate employing CBI (fuzzy and traditional). The
scalar pairs predicates, as opposed to the single variable predicates, in CBI and ESP
require most of the execution time. Employing static scalar pairs predicates in CBI can
result in an execution time that is more than 15 times slower than applying Tarantula
(fuzzy and traditional) to the same subject program. Furthermore, for some of the sim-
ulations included in the evaluation, employing both static and elastic scalar pairs pred-
icates in ESP results in an execution time that is more than 50 times greater than that
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of Tarantula. However, these efficiency results (∼5 times slower than CBI, ∼50 times
slower than Tarantula) seem reasonable considering the ability of elastic predicates to
provide simulation developers with a significantly better fault localization approach.

4.4.2. Many-Valued Labeling Functions. The most evident trend in Table VII related to
the use of many-valued labeling functions is that the Slowdown incurred very much
depends on the function chosen by the user. The simpler labeling functions used by
the approaches for localizing faults in the tcas, bates, heston, mc euro, um-oslr, ns2,
g/g/1, m/m/c, mmpp/d/1, sir, and ising simulations incur less Slowdown than the
complex Levenshtein distance function employed for schedule and schedule2.

The increase in Slowdown when moving from the simple functions to the more
complex Levenshtein distance is more evident in Fuzzy Tarantula than in Fuzzy CBI or
Fuzzy ESP. This is because in Fuzzy ESP and Fuzzy CBI, the additional computational
overhead incurred for the labeling function is masked by the profiling used to collect
predicate data and score suspiciousness. The statement-level implementation of Fuzzy
Tarantula does not employ predicates and thus does not mask the inefficiencies caused
by complex labeling functions.

4.4.3. Machine Time Versus Developer Time. It is important to note that although elastic
predicates and many-valued labeling functions make Fuzzy ESP less efficient to run
than Fuzzy CBI and Fuzzy Tarantula, these research contributions only incur machine
time and not developer time. If developers can remain productive while Fuzzy ESP
generates its ranked list of predicates, overall efficiency will be significantly improved
because the developer is given a drastically more effective list of ranked statements to
debug the simulation.

However, for simulations where the runtime is so overwhelming that increasing it by
a factor of 50 or 100 times would create unproductive developers, then using ESP would
be impractical. In general, we believe that these simulations are rare. Multiplying the
execution time of most software by a scalar factor rarely changes overall business
practices [Brat et al. 2000].

5. ESP IN AN IMPERFECT WORLD

The effectiveness of elastic predicates and many-valued labeling functions enable
ESP to incur significantly less Cost than CBI or Tarantula. However, there are three
factors that were controlled in our previous evaluation and could contribute to ESP’s
effectiveness: (1) the rate at which simulation predicates are sampled, (2) the number
of test inputs supplied for each simulation, and (3) the number of faults present in each
simulation.

In Section 4, we conducted an evaluation where every predicate instrumented in
a simulation was always sampled, thousands of test inputs were available for each
simulation, and in most simulations only one fault was present. Although this environ-
ment is highly desirable, it is not always available in practice. Therefore, we consider
our Section 4 evaluation environment a perfect world. In Sections 5.1 through 5.3, we
explore (1) the extent to which ESP benefited from the perfect world conditions and
(2) the robustness of ESP when the conditions degrade in an imperfect world.

It is important to note that when ESP and CBI are referred to throughout this sec-
tion, the fuzzy versions of the respective approaches are invoked. Given the superior
effectiveness of the fuzzy approaches and the backward compatibility to their tradi-
tional counterparts, it is unnecessary to explore the traditional versions further for the
simulations employed in our evaluation.

5.1. Sparse Sampling

Recall that ESP and CBI use source code instrumentation to profile predicates in pro-
grams and simulations. The instrumentation, profiling, and subsequent analysis adds
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Fig. 4. CBI (nonstriped) and ESP (striped) under sparse sampling rates for the subject programs.

overhead to the execution. In CBI, this overhead can be limited by employing random
sampling of the predicates rather than always profiling every predicate. The sam-
pling is unbiased, collecting a representative subset of all predicates across the subject
program test suite. To ensure sufficient data collection, CBI relies on the large user
communities of the software in which it is deployed. The result is an effective approach
to isolating faults in software with wide distribution [Liblit 2008].

ESP is not designed to meet the same goals. In the most common use case, ESP is
deployed as a stand-alone approach for a single simulation developer. In this use case,
the goal is to identify failure-predicting predicates as effectively as possible for the test
inputs provided. As a result, random sampling is not used in ESP. However, to explore
the environments in which ESP is useful, it is important to evaluate elastic predicates
and many-valued labeling functions in the context of random sampling.

The Costs of 100 executions of the subject programs included in the evaluation
under ESP (striped) and CBI (nonstriped) with sampling rates from 1/10 to 1/10,000
are plotted in Figure 4. The bottom and top of each box in Figure 4 represent the lower
and upper quartile Cost and the black band is the median Cost. The whiskers extend
to the lowest and highest Cost.

Figure 4 shows that the effectiveness of CBI remains more stable under sampling
rates of 1/10 and 1/100 than the effectiveness of ESP. Once sampling is introduced, the
median Cost of localizing a fault in ESP increases significantly. Although ESP continues
to remain more effective than CBI by an absolute margin, the relative difference in
effectiveness between the two approaches narrows. At a sampling rate of 1/1,000, both
ESP and CBI begin to become significantly less effective.

The performance of ESP at a sampling rate of 1/10,000 reveals a trend: sufficiently
infrequent sampling rates will reduce the effectiveness of ESP to that of CBI. In these
cases, the mean and standard deviation of each profiled variable is based on so little
data that the resulting elastic predicates are no better, and often worse, than the static
predicates employed in CBI at predicting program failure. However, ESP’s performance
under more frequent sampling rates shows that elastic predicates do not require an
exact calculation of the mean and standard deviation of values at each program point.
Even at infrequent rates such as 1/100, estimations of the mean and standard deviation
result in effective failure-predicting predicates. This is significant: sampling rates of
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Fig. 5. CBI (nonstriped) and ESP (striped) with incomplete test suites for the subject programs.

approximately 1/10 do not necessarily reduce overhead, whereas rates of 1/100 or more
do [Liblit 2008].

Given these results, it would be practical to consider applying sampling to reduce
the overhead of ESP for large distributed simulations with multiple users. In the worse
case, the effectiveness of ESP would reduce to CBI, and for sampling rates of 1/1,000
or more, we would expect ESP to outperform CBI.

5.2. Incomplete Test Suites

Uncertainty in data collection can also be introduced through an incomplete or sparse
test suite. Each subject included in our evaluation is accompanied by several thousand
test inputs. Although this is desirable, it rarely occurs in practice because of how
simulations are developed and tested [Law and Kelton 1991; Krahl 2005]. Figure 5
summarizes the effect of smaller test suites on the elastic predicates and many-valued
labeling functions in ESP (striped) compared to the static predicates and many-valued
labeling functions in CBI (nonstriped). At random, 100 incomplete test suites from the
original test suite for each subject program were chosen, forming test suites at 1/5th,
2/5th, 3/5th, and 4/5th the size of the original suite.

Each test case was chosen with uniform random probability without replacement,
and if the resulting sparse test suite did not contain at least 10 failing test cases and
at least 20 successful (passing) test cases, it was dissolved and the sparse test suite
was reformed. The effectiveness of ESP and CBI is stable across sparse test suites of
different sizes for the subject programs included in the evaluation. Under the sparsest
test suites included in the evaluation, 1/5th of the complete test suite, both ESP and CBI
show larger variation in effectiveness compared to the other test suite sizes. However,
the median effectiveness of each technique at this test suite size is similar to the median
of each technique when all test cases are included. Overall, Figure 5 reveals that for
the subject programs included in the evaluation, if the test suite formed features at
least 20 successful (passing) test cases and 10 failing test cases, then the overall size of
the test suite has little effect on the Cost incurred. For those simulations where a long
runtime makes obtaining a high number of test cases impractical, a test suite with 20
successful (passing) test cases and 10 failing test cases is likely to be sufficiently large
to apply ESP and get effective results.
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5.3. Multiple Faults

The established practice in the statistical debugging community is to evaluate the
effectiveness of a debugger by quantifying how well it finds the first fault in a sub-
jectprogram or simulation [Jeffrey et al. 2008; Jones and Harrold 2005]. We followed
this practice in the perfect world evaluation to enable ESP to be compared against the
leading alternatives. Unfortunately, simulations are frequently written that contain
multiple faults. It is important to ensure that ESP has a process for identifying mul-
tiple faults and that the process is effective. The following algorithm guarantees that
ESP gives at least one failure-predicting predicate for each fault that is present in a
simulation: (1) rank each predicate in descending order of suspiciousness, (2) remove
the top-ranked predicate p and discard all execution traces where p was true, and
(3) repeat the process until either the set of execution traces or predicates is empty.

Five versions of the subject simulations in the perfect world evaluation contain
multiple faults. Applying our algorithm to these versions yields results in line with our
previous evaluation of ESP. Each fault in each of the five versions was localized with
a Cost greater than 10%. In the perfect world evaluation the majority of the faults
in subject simulation were localized while incurring a Cost greater than or equal to
10%. Although we are hesitant to generalize our results based on the small sample of
faulty simulation versions and the difficult nature of the multiple faults problem, we
are encouraged by ESP’s performance.

6. CASE STUDY: ESP IN THE WILD

A case study helps to highlight each of our contributions in combination and eluci-
date how ESP can be applied for simulation developers attempting to localize a faulty
statement causing an unexpected output. Our case study simulation is an agent-based
simulation that studies how the availability of different restaurant choices in an area
effect obesity. The simulation contains four agent populations: people, homes, restau-
rants, and workplaces. Inputs include the number of people, the eating habits of the
people, the starting age and weight levels of the people, the number of workplaces,
the number of restaurants, and the types of restaurants. Every day, each person eats
three meals, which are obtained from the restaurants. Each meal contributes a number
of calories to the individual based on the restaurant’s type. People chose restaurants
based on their current location. At the end of every week, each person’s weight is ad-
justed based on the number of calories that they consumed during the week compared
to the number of calories that they needed to maintain their weight level. Calorie levels
are reset each week, and the obesity of each individual is tracked over time. Agents are
removed from the population as a stochastic function of their life expectancy, which is
influenced by their obesity.

The simulation is capable of reproducing historical trends in the percentage of
(1) obese, (2) overweight, (3) normal weight, and (4) underweight individuals in datasets
for different cities in the United States. Each city specifies the restaurant choices that
are available, and the datasets measure the percentages of the city population falling
into each of the four specified weight categories. However, in some of the cities, individ-
ual agents reach abnormally large weights. We refer to these agents as super-gainers.
This occurs at a significantly higher rate than it does in the U.S. population. We apply
ESP to localize the statement causing this unexpected output.

We use ESP to instrument the simulation source code related to each person agent in
the simulation to capture elastic and static single variable and scalar pair predicates.
The predicates instrumented for each agent are largely composed of seven variables:
(1) the age of the agent; (2) the height of the agent; (3) the weight of the agent; (4) the
bmr of the agent, which is the number of calories the agent’s body uses in a day; (5) the
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bmi of the agent, which is a screening measure for obesity; (6) the average number of
calories the agent consumes in a week; and (7) lifeExp, the current life expectancy of
the agent given the previously mentioned variables.

We collect the predicate data for each agent at the end of each simulated week. The
collected predicates for each agent at the end of each week serve as an execution trace
of the simulation. The passing extent, uagent, for the execution trace is based on the
agent’s weight (weight). It is computed using historical data to determine the extent
to which the agent’s weight drastically deviates (σweight) from mean weight of the city
(weight). The formula for the many-valued labeling function is shown in Equation (2):

uagent = exp
( − (weight − weight)2/σ 2

weight

)
. (2)

To localize the statement causing the unexpected outcome, the simulation is run for
one of the cities with a large number of super-gainers. The extent to which an agent
is or is not a super-gainer is determined by computing 1 − uagent. Equation (2) is very
similar to the function we used to determine the passing extent of a given execution
trace for the ising and sir models discussed in Section 4.1.2. In general, it reflects
a straightforward strategy to determine the extent to which a given value deviates
from an expected mean on a [0,1] scale. This strategy is applicable to any stochastic
simulation with an expected value and an expected variance.

The most suspicious predicate uncovered by ESP is the elastic scalar pairs pred-
icate: age257 − li f eExp271 > μage−li f eExp + 3σage−li f eExp. Recall from the discussion on
predicates in Section 3 that this means that agents who have a drastic difference be-
tween their age (in line 257) and life expectancy (in line 271) are more likely to be
super-gainers.

This predicate localizes the fault. The statement in line 257 of the simulation is
poorly written. Under certain conditions, it allows an agent to continue living without
checking his or her newly determined life expectancy. Neither the SME or the simu-
lation developer who constructed the simulation realized that such a condition could
occur. Given the line of code and the relationship of the variables involved, the fault
was quickly located and the simulation’s implementation was corrected. In resulting
runs, there were significantly fewer super-gainers.

The cause of super-gainers in the model seems clear enough once found. If obese
agents are capable of drastically outliving their life expectancy, they will continue to
gain weight in perpetuity. Although this bug appears straightforward once identified,
it had been present and undiscovered in this simulation for months. Many bugs are
obvious only once one knows where to look. ESP directed us to two lines of code and
specified a single condition to consider: the difference between the agent’s age and the
agent’s life expectancy is significantly larger than average.

This case study highlights our two contributions working in combination. First, the
many-valued labeling function is needed, as the exact expected weight of an agent
cannot be determined due to the use of stochastic distributions in the simulation.
Without the ability to specify Equation (2), it would not be possible to make a distinction
between passing and failing execution traces. As a result, effective statistical debugging
would not be possible. Furthermore, the condition causing the unexpected condition
was isolated by an elastic predicate. The static predicate, age257 − li f eExp271 > 0,
identifies when an agent outlives his or her life expectancy. Unfortunately, it is not
particularly useful for isolating the fault in the simulation, because it is valid for an
agent to briefly outlive his or her life expectancy since agents die off as a stochastic
function of the li f eExp. However, elastic predicates enable us to realize that when
many agents are capable of drastically outliving their life expectancy, super-gainers
become rampant.
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7. RELATED WORK

ESP is closely related to VV&T. Verification reflects confirming that a simulation ac-
curately represents the developer’s conceptual model. Validation reflects the degree to
which a simulation is an accurate representation of the real world from the perspec-
tive of intended use. Both definitions stress checking via comparison to a reference
standard. However, verification checks that the simulation is solved correctly, whereas
validation checks that the simulation matches trusted data or other model outputs
[Sargent 2013]. Testing is inherent in simulation verification and validation. Testing
compares an expected result against model output. When testing uncovers a model
output that deviates from the expected result, ESP finds the source code statement
causing the deviation. Given the complementary relationship of ESP and VV&T, we
review work related to both.

Simulation verification techniques depend on simulation implementation languages.
Simulation-specific languages (Arena, Simulink) entail verification via structured
walk-throughs of the code and program traces that are tested against expected re-
sults. These techniques check that the language, the pseudo–random number gener-
ator, and the simulation are correct [Sargent 2013]. Implementing a simulation in a
general-purpose programming language (Java, C/C++) allows for model checking to be
employed. Model checking ensures that each requirement specified in the design of
the simulation is satisfied in the implementation [Bérard et al. 2010]. This analysis is
powerful, but model checking tools often have a steep learning curve.

Simulation validation techniques are both subjective and objective. Subjective ones
rely on the judgment of SMEs, whereas objective techniques use statistical tests. Sub-
jective techniques include (1) animation and operational graphics to test that simu-
lation output dynamics are behaving correctly over time [Rohrer 2000] and (2) face
validity and turing tests where SMEs assess if the simulation output is a reasonable
facsimile of the real system [Colby et al. 1972]. Objective tests include (1) exploratory
and sensitivity analysis to statistically test if the simulation inputs have the same effect
on the outputs as they do in the real system [Saltelli et al. 2000; Birta and Özmizrak
1996; Barton and Lee 2002] (2) and stability analysis to quantify the variance of a
simulation output [Higham 2001; Srivastava et al. 2002].

8. CONCLUSIONS

Although statistical debuggers are generally effective, they are not tailored to models
and simulations employing continuous numbers and random variates. Elastic predi-
cates and many-valued labeling functions address that deficiency. Elastic predicates
complement the static predicates employed in existing statistical debuggers by profiling
variable values to create partitions that isolate faulty ranges of values. Many-valued
labeling functions maximize the effectiveness of elastic predicates by creating a process
to differentiate between execution traces that produce the specified output (and pass)
versus those execution traces that produce unspecified output (and fail) in the face of
stochastics. These two contributions both hold in an imperfect world.
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