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Abstract—Current wind energy data platforms face significant
challenges in securing and managing extensive data from both
offshore and onshore wind farms. These challenges include vul-
nerabilities to cyber-attacks, data tampering, breaches, complex
data-sharing issues due to privacy concerns and regulatory com-
pliance, and a lack of scalability and flexibility in analytical tools
for real-time data processing. This paper proposes a novel multi-
layered data security architecture, termed “VindSec-Llama,” to
address these challenges. It integrates Generative Al, blockchain,
federated learning, and Pipeline Bill of Materials (PBOM) to
enhance data analytics, model development, and security across
several layers, including Infrastructure, Data Lake, Federated
Learning, MLOps, Data Provenance, and LLM. Each layer
is designed to meet specific functional requirements, such as
handling large datasets, facilitating secure federated learning,
automating risk management, and ensuring data provenance and
traceability. The platform, deployable in server environments
(cloud or on-premises), complies with the Risk Management
Framework (RMF) guidelines and security standards. It features
a blockchain-enabled, coordinator-less federated learning system
to enhance data privacy and security by enabling the development
of privacy-preserving machine learning models with data from
different wind farms. Automation plays a pivotal role throughout
VindSec-Llama, with Meta’s custom-trained Llama-3 LLM used
for generating remediation scripts in the Infrastructure Layer
and for producing PPBOM in the MLOps Layer. The Llama-3
LLM has been quantized and fine-tuned using Qlora to ensure
optimal performance on consumer-grade hardware. The MLOps
pipeline setup, a critical functionality of VindSec-Llama, ensures
seamless integration and deployment of machine learning models,
embodying best practices in continuous integration and delivery.
This setup is geared towards maximizing security, compliance,
and operational efficiency. End-to-end data provenance in the
system is captured as ModelCards and NFT objects. A prototype
of the platform has been implemented within a wind-energy
testbed with the collaboration of Department of Energy US,
illustrating its practical applications and benefits.

Index Terms—DevSecOps, Generative-AI, LLM, Llama-3,
Blockchain, NFT, PBOM, Wind-Energy

I. INTRODUCTION

Wind energy, a cornerstone of sustainable power generation,
increasingly relies on sophisticated data platforms to optimize
performance and ensure reliability. These platforms collect,
process, and analyze vast amounts of data from sensors, tur-
bines, and environmental inputs to facilitate real-time decision-
making, predictive maintenance, and energy management [1].
However, the security of these data platforms is a critical
concern, as they are frequent targets for cyber-attacks that can
lead to data breaches, system disruptions, and even physical
damage to the infrastructure. The proprietary nature of the
data and its importance to grid stability and energy forecasting
further exacerbate these security vulnerabilities [2]. Traditional
security measures often fall short due to the complexity and
dynamic nature of the networked environments in which
wind farms operate. Additionally, the integration of these
platforms with public grids and the internet increases exposure
to potential cyber threats, underscoring the need for advanced,
resilient security architectures that can adapt to the evolving
landscape of cyber risks while maintaining the integrity and
availability of critical wind energy data [3].

To address these challenges, this paper introduces a novel
data security architecture for wind energy data platforms,
known as “VindSec-Llama.” This platform incorporates Meta’s
custom-trained Llama-3 LLM [4], [5], blockchain [6], [7],
federated learning [8], and PBOM [9], [10], all aimed at
enhancing data analysis, model development, and security.
VindSec-Llama is structured into several integrated layers:
the Infrastructure Layer, Data Lake Layer, Federated Learning
Layer, MLOps Layer, Data Provenance Layer, and the LLM
Layer. The deployment of this platform in an infrastructure
(e.g., cloud or on-premises) adheres strictly to RMF guidelines



= = = =
Data Provenance % B =
Layer

Ga)ﬁ Cgbﬁ O’EOIMI C’Qﬁ
%

LLM Layer — 5

A\

® ) ®
MLOps Layer —— | = gyft To syt kﬂf = sytt %{ = sylt (29
L GitHub ACTio: A'" ‘n b A ‘ h )
[ V‘ v v 13 )
Federated Learning B - N & N 8 -
Layer — > g ® ®
\___ A 4 Blockchain » A Wy,
[ v v v ¥ ‘
Data Lake S — .
Layer
\ A A A A Y,
(¥ v v 13 N
Infrastructure = =
Layer — > E' — ‘_:_> I%
\_ " ServersiVMs J

Fig. 1: Platform layered architecture.

and security standards [2]. All vulnerabilities in the infras-
tructure are scanned and identified against SCAP Security
Guide (SSG) frameworks, such as STIG and PCI-DSS [11].
These identified vulnerabilities are fixed using remediation
scripts generated by Meta’s custom-trained Llama-3 LLM. The
blockchain-enabled, coordinator-less federated learning sys-
tem [8] allows the development of privacy-preserving machine
learning models using data from different wind farms. The
MLOps pipeline setup promotes the seamless integration and
deployment of machine learning models, aligning with best
practices in continuous integration and delivery. Moreover, the
custom-trained Llama-3 LLM is used to produce PBOMs in
the MLOps Layer, where each supply chain/pipeline informa-
tion is tracked as PBOMs. The data provenance information
in the system is captured as Model Cards [12] and NFTs [13],
and stored in the underlying blockchain. A prototype of the
platform has already been implemented within a wind-energy
testbed, demonstrating its practical applications and significant
benefits. This paper will detail our major contributions to this
field.

1) Introduction of the Data Platform, which integrates Gen-
erative Al, blockchain, federated learning, and PBOM to
address key security and operational challenges in wind
energy data management.

2) Integration of a novel, blockchain-enabled, coordinator-
less federated learning system within VindSec-Llama,
enhancing data privacy and security across distributed
wind energy data networks.

3) Integration of automation processes using fine-tuned
Llama-3 LLM, including the generation of remediation
scripts and PBOMs, facilitating rigorous security prac-
tices and efficient model deployment in server environ-
ments (e.g., cloud, on-premises).

4) Demonstration of VindSec-Llama’s effectiveness
through a prototype deployed within a wind-energy
testbed at VMASC in Virginia, USA, in collaboration
with the US Department of Energy.

II. SYSTEM ARCHITECTURE

Figure 1 describes the architecture of the platform. The pro-
posed platform comprises six layers: 1) Infrastructure Layer,
2) Data Lake Layer, 3) Federated Learning Layer, 4) MLOps
Layer, 5) LLM Layer, and 6) Data Provenance Layer. Below
is a brief description of each layer:

A. Infrastructure Layer

The Infrastructure Layer is composed of an array of on-
premises and cloud servers, including hardware servers and
cloud virtual machines (VMs), each integral to the operational
framework of the platform. In compliance with RMF guide-
lines, these servers are mandated to be managed securely,
adhering to established standards such as NIST SP 800-
53 [2]. This encompasses regular scanning for vulnerabilities
and timely remediation of identified security issues. However,
automating the RMF process for this infrastructure presents
considerable challenges. These challenges stem from the in-
herent complexity of the system, the need to align with diverse
standards like NIST SP 800-53, and the requirement to support
continuous Authority to Operate (ATO) [14]. To address these
challenges, the VindSec-Llama platform proposes an end-to-
end RMF automation system. This system integrates custom-
trained Meta’s Llama-3 LLM with OpenSCAP, a tool for as-
sessing and maintaining security compliance. The vulnerability
scanning performance with OpenSCAP and the vulnerability
fixing scripts (e.g., Ansible or Puppet [11]) generate through
the fine-tuned Meta’s Llama-3 LLM. These scripts are then
executed to address the vulnerabilities within the server in-
frastructure. This approach culminates in a fully automated
RMF system.

B. Data Lake Layer

The Data Lake Layer plays a pivotal role, particularly
within the context of a blockchain-enabled, coordinator-less
federated learning system [8]. In this system, various peers
participate in the federated learning tasks, each acting as
a node within the blockchain network. Notably, each peer
maintains its own data lake, contributing to the decentralized
nature of the system. Therefore, the Data Lake Layer is
comprised of these individual data lakes, distributed across
the various peers participating in the federated learning tasks.
This structure allows the federated learning system to build
privacy-preserving machine learning models using data from
different wind farms.

C. Federated Learning Layer

The Federated Learning Layer within the proposed
VindSec-Llama architecture addresses the limitations of con-
ventional federated learning systems. Traditional federated
learning frameworks typically rely on a centralized coordinator
to aggregate local machine learning models, a structure that is
inherently vulnerable to attacks and privacy breaches. More-
over, these systems often fall short in providing satisfactory
transparency and provenance of the resulting machine learning



models [8]. To overcome these challenges, the VindSec-
Llama platform employs a blockchain-enabled, coordinator-
less federated learning system. This approach ensures that each
peer participating in the federated learning tasks is connected
as a node within the blockchain network. Crucially, each
peer maintains its own data lake, where real data is stored
securely. These peers independently train their local machine-
learning models using the data from their respective data lakes.
Subsequently, these local models are aggregated to form a
comprehensive global model. This allows for the building
of privacy-preserving machine learning models with the data
from geo-distributed wind farms [15].

D. MLOps Layer

The MLOps Layer in the proposed VindSec-Llama or-
chestrates the continuous integration and delivery of vari-
ous services within the system. This layer leverages CI/CD
pipelines, such as GitHub Actions, to continuously build and
update federated learning models and the services that utilize
these models [16]. An essential function of the MLOps Layer
is to deploy these models and associated services in the
server infrastructure using cloud-native container orchestration
systems like Docker and Kubernetes [17]. One of the main
challenges in cloud-native software deployment is mitigating
supply-chain attacks and addressing vulnerabilities inherent in
open-source tools. Additionally, tracking the entire develop-
ment lifecycle and managing data provenance are complex
tasks. The proposed VindSec-Llama platform addresses these
challenges using SBOMs and PBOMs [10], [18]. Each code
change (e.g., done as pull requests) in the ML models is
scanned through SBOMs to identify vulnerabilities and depen-
dencies. Furthermore, a custom-trained Meta’s Llama-3 LLM
generates PBOMs specific to each pull request. These PBOMs
are created as JSON schemas, detailing critical aspects such
as pull request information, test results, identified vulnerabil-
ities in the built container, and the pull request’s status and
timestamps.

E. LLM Layer

The LLM Layer serves the generative Al functions across
the aforementioned layers. Central to this layer is the deploy-
ment of the custom-trained Meta’s Llama-3 LLM. This LLM
is used to generate server-hardening scripts (based on the vul-
nerabilities identified in the Infrastructure Layer) and PBOMs
in the MLOps Layer. To prepare the Llama-3 LLM, we’ve
undertaken a meticulous training process, collaborating with
Qlora to incorporate a 4-bit quantized pre-trained language
model with Low-Rank Adapters (LoRA) [19], as shown in
Figure2. During the training phase, we meticulously feed the
model with a dataset encompassing pull-request information,
test result data, software package vulnerability scan results,
Ansible/Puppet remediation scripts, statuses, and the desired
PBOM format represented as a JSON schema [10]. As a
result, the Llama-3 LLM becomes proficient in responding
to requests for the generation of new PBOMs for software
updates, utilizing the input data provided (which typically
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Fig. 2: Fine-tune Llama-3 LLM with Qlora.

includes pull-request details, SBOM information, statuses, and
more) and Ansible/Puppet remediation script generation. The
fine-tuned Llama-3 LLM runs on Ollam [20].

F. Data Provenance Layer

The Data Provenance Layer is designed to manage the data
provenance functions associated with federated learning, RMF
automation of the server infrastructure, and CI/CD pipeline
verification. In the Federated Learning Layer, the data prove-
nance information of the ML models is meticulously recorded
using Model Cards [12]. These cards capture the evolution of
the model data from its origin, encompassing aspects such
as ML model ownership and the storage locations of the
ML models. For the RMF automation in the Infrastructure
Layer, the system statuses, including vulnerabilities and their
remediation, are also encapsulated within customized NFT
tokens. In the MLOps Layer, the data provenance information
pertaining to the end-to-end software and pipeline verification
is stored and managed via Model Cards. These cards also
provide detailed information about all activities involved in
the scanning and pipeline verification processes.

III. FUNCTIONALITY

The platform encompasses eight main functionalities: 1)
LLM fine-tuning, 2) Server infrastructure setup, 3) Server
vulnerability scanning and fixing, 4) Federated model training,
5) MLOps pipeline setup, 6) SBOM/PBOM generation, 7)
Data provenance handling, and 8) Attack mitigation. This
section delves into the specifics of these functions.

A. LLM Fine-Tuning

VindSec-Llama utilizes a custom-trained LLama-3 LLM
for PBOM generations. The LLama-3 LLM is precisely fine-
tuned and trained specifically for PBOM generation with the
software-supply chain information. To accomplish this, we un-
dergo a rigorous training process, collaborating with QLoRA
to convert a 4-bit quantized pre-trained language model into
LoRA, thereby optimizing performance even on consumer-
grade hardware. During the training phase, we carefully feed
the model with a rich dataset encompassing the pull-request
information, test result data, software package vulnerability
scan results, SBOM data, statuses, and the desired PBOM
format represented as a JSON schema 11. As a result, the
LLama-3 LLM becomes proficient in responding to requests
for the generation of new PBOMs for software updates,
utilizing the input data provided, which typically includes
pull-request details, SBOM information, statuses, and more.
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By utilizing the privacy-preserving custom-trained LLM, we
effectively mitigate the data privacy issues inherent in the use
of commercial LLMs such as OpenAl GPT.

The fine-tuned LLama-3 LLM operates within Ollama [20],
as depicted in Fig. 2. Interaction with Meta’s LLama-3 LLM
is facilitated through Ollama’s LLM API, Llamaindex [21],
and LangChain [22]. This robust interface enables streamlined
and effective communication with the language model, as
illustrated in Fig. 3.

B. Server Infrastructure Setup

The next functionality of the proposed platform is the
setup of the server infrastructure, a foundational step critical
for the successful deployment and operation of the platform.
The infrastructure setup encompasses the deployment of a
network of cloud/on-premises servers, which may include both
hardware servers and VMs. Key to this setup is adherence to
stringent security protocols and compliance standards, such
as NIST SP 800-53, to ensure the infrastructure aligns with
military-grade security requirements [2].

C. Server Vulnerability Scanning and Fixing

A key function of the server infrastructure is to han-
dle vulnerability scanning of servers onboarded onto the
platform. For instance, consider scanning vulnerabilities in
Ubuntu 20.04 servers based on the STIG guidelines and fixing
them according to the STIG standard. OpenScap contains
SCAP documents related to Ubuntu 20.04 servers, such as
”scap-security-guide-0.1.60/ssg-ubuntu2004-ds.xml” [11]. The
SCAP document includes variable providers that relate to
different compliance standards such as STIG and CIS. The
blockchain smart contract interacts with the OpenScap API on
each server and instructs it to perform the scan according to
the STIG profile. The scan generates a scan/audit report which
includes the server’s STIG compliance score, based on the
vulnerabilities found in the system, and detailed information
about the vulnerabilities. Our system then offers automated
server hardening capabilities based on the identified vulnera-
bilities. To achieve this, we have leveraged the custom-trained

Llama-3 LLM to automatically produce an Ansible playbook
or bash script, aligning with security compliance standards
such as STIG. The Ansible playbook is dynamically generated
by considering the vulnerabilities identified within the system
and adhering to STIG compliance requirements, as shown in
Figurel3. Once the server hardening playbook is ready, the
smart contract triggers its execution on the respective server,
effectively implementing the necessary hardening measures.
The identified vulnerabilities and system statuses are recorded
as NFT objects and stored in the blockchain ledger for further
verification and auditing functions.

D. Federated Model Training

In the federated learning environment of VindSec-Llama,
numerous peers collaborate. Each peer maintains their own
set of data, which is stored in an off-chain data lake. These
data lakes could be geographically distributed across different
wind energy power plants. In federated learning, initially, a
leader peer is selected among the peers based on a consensus
algorithm to handle coordination functions. The leader peer
manages the creation of the federated pipeline, the initializa-
tion of model parameters, and the aggregation of the global
model. The leader peer initializes the federated pipeline and
model parameters and publishes them on a blockchain [8].
Subsequently, other peers retrieve the initial model and model
parameters from the blockchain and train their local ML
models (according to the model parameters) with their own
datasets (stored in the off-chain storage). Once all peers have
created their local models, the leader peer averages them into a
global model using algorithms like stochastic gradient descent
(SGD). Finally, the global model block is transmitted to all
peers, as shown in Figure 4. The data provenance information
of the ML models is captured as Model Cards.

E. MLOps Pipeline Setup

The MLOps pipeline setup is designed to streamline and
optimize the machine learning (ML) lifecycle within the
platform. This setup involves establishing a robust and au-
tomated pipeline for the continuous integration, delivery,
and deployment of machine-learning models and associated
services. The core objective of the MLOps pipeline is to
enhance the efficiency, reproducibility, and reliability of ML
model development and deployment processes, aligning them
with best practices and operational requirements of military
intelligence. Central to this setup is the utilization of CI/CD
tools, such as GitHub Actions, which automate the building,
testing, and deployment of federated learning models and
other related services [16]. This automation ensures that any
updates or changes to the ML models or their dependencies
are seamlessly integrated and deployed without disrupting the
platform’s operations. The MLOps pipeline also leverages
containerization technologies like Docker and orchestration
tools such as Kubernetes, facilitating the deployment of ML
models in a cloud-native environment [17]. This approach
ensures scalability and aids in the efficient management of
resources.
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F. SBOM/PBOM Generation

For each code change (e.g., pull request [16]) of the
federated learning models, the system performs a comprehen-
sive scan of the containers, meticulously generates SBOMs
(in SPDX-JSON or CycloneDX formats) [18], and identi-
fies vulnerabilities within the system. Similarly, PBOMs are
meticulously generated for each pull request, leveraging the
capabilities of our custom-trained Meta’s Llama-3 LLM. As
soon as a pull-request is initiated in the ML Model, the
fine-tuned Meta’s Llama-3 LLM creates PBOMs based on
data including pull-request details, unit test results, status,
and case numbers. These PBOMs link with the respective
SBOM analysis results of the pull request. The generated
PBOMs are encoded as NFT tokens and stored in the un-
derlying blockchain ledger. In this way, the system maintains
a thorough and immutable record of all component details
and their evolution, bolstering transparency and accountability
throughout the software development lifecycle [23].

G. Data Provenance Handling

The platform also records data provenance information of
federated learning model training as model card objects to
provide transparency and traceability of the processes and
ensure compliance with regulatory requirements. A model card
is a standardized format used for documenting the performance
and associated metadata of machine learning models. The
information about the vulnerabilities identified in the servers,
server hardening statuses, and PBOMs generated for each
code change of the ML models are captured and recorded
as NFT tokens. This information can be useful for auditors,
regulators, and stakeholders to assess the effectiveness of the
scanning and fixing processes and the overall security posture
of the system. These model cards and NFTs are stored in
the blockchain ledger, ensuring their immutability and tamper-
proof nature [24].

H. Attack Mitigation

The platform’s multifaceted security approach, incorpo-
rating blockchain, NFTs, and Al-driven PBOM generation,
forms a formidable defense against a wide array of potential

Fig. 5: Proposed large scale testbed with wind turbines, on-
prem Llama-3 LLM and blockchain in VMASC Virginia US.

Fig. 6: 3D-printed wind turbines, wind speed and direction
detectors, and the 3D printing setup used in the testbed.

cyberattacks. The immutability of blockchain ledger entries
ensures the integrity of data and resists attempts to manipulate
identities. The decentralization of federated learning enhances
resilience against attacks targeting centralized control points.
Additionally, the model cards-based data provenance handling
of ML models facilitates auditing and effectiveness verifica-
tion. The PBOMs enhance security by proactively identifying
vulnerabilities in the ML models and tracing the supply
chain information. When deploying a model, the supply chain
data can be verified, effectively countering pipeline attacks,
including supply chain vulnerabilities. The end-to-end RMF
automation of the servers and the system facilitates the re-
quirement to support continuous ATO. The NFTs add an extra
dimension of transparency and accountability, specifically with
their representation of vulnerabilities, system statuses, and
pipeline verification [23]. The integrated system stands as a
comprehensive defense mechanism, bolstering system security
and resilience against an array of potential threats.

IV. IMPLEMENTATION, TESTBED SETUP, AND
EVALUATION

The proposed VindSec-Llama system testbed has been es-
tablished at VMASC in Virginia, USA, in collaboration with
the US Department of Energy, as shown in Figure 5. We have
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3D printed all elements of the wind turbines, including the
tower, nacelle, rotor and hub, blades, wind speed/direction
sensors and other components, as shown in Figure 6. The
blockchain [6], [7] and other services are deployed on the
infrastructure layer (e.g., cloud/on-prem servers). The Llama-
3-8B model [5] has been used and trained for PBOM gen-
eration. The quantized Llama-3-8B LLM runs with Ollama
on a consumer-grade server (without using a GPU). The LLM
fine-tuning/training process was conducted through Qlora with
a 4-bit quantized pre-trained language model using Low-
Rank Adapters (LoRA) [19]. The platform’s performance is
evaluated in two key areas: LLM and blockchain-enabled
federated learning.

In the evaluation of blockchain-enabled federated learning,
we focused on assessing the accuracy and training loss of
federated learning models, as well as the performance of the
blockchain system. The federated learning process involved
numerous iterations to refine the model’s accuracy. In this
evaluation, we trained the model over 1,000 iterations and
plotted both the accuracy and the training loss. Figure 7
illustrates the variation in total training loss across different
peers in each iteration. Figure 8 displays the accuracy of
the federated machine learning model. Additionally, the block
generation time, measured while increasing the number of
peers up to seven, is shown in Figure 9.

In the LLM evaluation, we analyzed the responses from the
LLM regarding its ability to generate server-hardening scripts
and PBOMs. The Llama-3 LLM has been custom-trained to
specialize in generating PBOMs and vulnerability-fixing Ansi-
ble/Puppet scripts. Prompts guide the custom-trained Llama-3
LLM in understanding the specific requirements and context
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of each service [25]. Figure 10 illustrates an example prompt
used to instruct the LLM for generating a PBOM object. The
prompt is designed to encapsulate the nuances of inputs (e.g.,
pull request information, SBOM information, vulnerability
statuses, etc.), thereby enabling the LLM to generate targeted
PBOMs. Figure 11 shows an example of a PBOM object
generated by the LLM. These PBOMs are created as structured
JSON schemas, encompassing critical details such as software
update (e.g., pull request) information (creator, verifier, ap-
prover, timestamps), test results, identified vulnerabilities, and
the status of the pull request. Figure 12 provides an example
prompt used to instruct the LLM to generate server-hardening
Ansible scripts based on the identified vulnerabilities. The An-
sible playbook is then dynamically generated by considering
the vulnerabilities identified within the system and adhering
to the STIG compliance requirements, as shown in Figure 13.

V. RELATED WORK

Various researchers have attempted to enhance the security
and privacy of cloud-native software services and data plat-
forms. The key elements and architecture of these research
initiatives are outlined in this section. Table I summarizes the
contrast between these projects and the proposed platform.

White et al. [14] introduce Continuous RMF, a novel
approach utilizing blockchain technology to address delays in
product release cycles and enhance security and functionality.
Drljevic et al. [26], through Perspective RMF, explore the
potential of blockchain technology to revolutionize business
transactions by introducing a trust model based on algo-
rithms. In the Let’strace system, Bandara et al. [24] present a
blockchain-based cyber supply chain provenance platform that
integrates TUF and In-ToTo frameworks, verifying software
updates and enhancing supply chain security. In the Vind
system, Bandara et al. [27], present a blockchain-based cyber
supply chain provenance platform to address vulnerabilities
in the Energy Delivery Systems supply chain. In SmartGrid-
RMEF [2], Aberibole et al. evaluate the impact of blockchain on
decentralizing smart grids using the NIST conceptual model.

A. Conclusion and Future Works

This paper presents a data security architecture, “VindSec-
Llama,” incorporating Generative Al, blockchain, federated



TABLE I: Cloud-native security framework comparison

Platform Centralized/  Blockchain ~ Supported RMF  Data Provenance NFT Continuous ATO Al
Distributed Support Frameworks Support Support Support Integration

VindSec-Llama Distributed 4 NIST, PCI-DSS v v v v
Contineous RMF [14]  Distributed v NIST X X X X
Perspective RMF [26]  Distributed v N/A X X X X
Letstrace [24] Distributed v N/A v X X X
Vind [27] Distributed v N/A v X X X
SmartGrid-RMF [2] Distributed X NIST v X v X

response_object_schema =
(

{
B properties

"properties"
"package
"package_name'

)

}

“format": "date-time"},

"items": {"type": "string"}},

properties’
“"vulneral
"name": {
"severity!'
"fix_status'

prompt = ChatPromptTemplate(
messages=[
SystemMessagePromptTemplate. from_template(
"As an AI Agent specializing in PBOM Generation, your task is to interpret"
" the provided pull-request information and generate the corresponding”
" PBOM object."

HumanMessagePromptTemplate.from_template(
"Given these pull-requests: \n{pull_request} with associated SBOM:"
" \n{sbom}, for the specified software package: {package}, please"
" generate the appropriate PBOM object. Your response should be format:
" as a JSON object, following this schema: \n{response_object_schema}.
" Please ONLY include the JSON object in your response. DO NOT include"
" any additional text or descriptions."

Fig. 10: PBOM generation prompt.

learning, and PBOM to address the prevailing security chal-
lenges in wind energy data management. The VindSec-Llama
platform offers a robust solution that not only enhances data
security and privacy but also streamlines operational efficien-
cies through automation and advanced data processing tech-
niques. The introduction of a blockchain-enabled, coordinator-
less federated learning system represents a significant leap
forward in secure data sharing across distributed networks,
crucial for the wind energy sector. Automation is a pivotal
aspect of VindSec-Llama, with Meta’s custom-trained Llama-
3 LLM generating remediation scripts to address identified
vulnerabilities in the server infrastructure. Data provenance
information is captured as ModelCards and NFTs and stored
in the underlying blockchain, ensuring transparency and trace-
ability. The practical deployment of VindSec-Llama within a
wind-energy testbed has demonstrated the platform’s capacity
to handle real-world data scales and complexities, affirming its
effectiveness and adaptability. As the demand for renewable

"token_id": "pbom123",
"timestamp": "2023-11-01T12:30:00Z",
"package": {
"package_id": "pkg789",
"package_name": "example_app"

he

"pull_requests": [

"id 'pra56",

"timestamp": "2023-11-01T14:45:00Z",

"status": pproved”,

"developers": ["dev1", "dev2"],

"approver": "approver1",

"vulnerabilities": [

{

"vulnerability_id": "vuln123",
"name": "SQL Injection",
"severity": "high",
"fix_status”: "unresolved"

"id": "pr457",

"timestamp": "2023-11-02T09:15:00Z",

"status": "merged”,

"developers": ["dev3", "dev4"],

"approver": "approver2",

"vulnerabilities": [

{

"vulnerability_id": "vuln124",
"name": "Cross-Site Scripting (XSS)",
"severity": "medium",
"fix_status": "fixed"

"vulnerability_id": "vuln125",
"name": "Insecure Dependency",
"severity": "low",
"fix_status": "fixed"

Fig. 11: PBOM object generate by LLM.

energy continues to grow, so does the need for secure and
efficient data management platforms. VindSec-Llama stands
as a testament to the potential of integrating advanced tech-
nological frameworks to address these needs, paving the way
for more secure, efficient, and resilient energy infrastructures
globally. For future work, we plan to incorporate the proposed
data platform in a real wind-energy test environment in col-
laboration with Dominion Energy VA, USA.
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