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Abstract. We seek to increase user confidence in simulations as they are adapted 

to meet new requirements.  Our approach includes formal representation of 

uncertainty, lightweight validation, and novel techniques for exploring emergent 

behavior.  Uncertainty representation, using formalisms such as Dempster-Shafer 

theory, can capture designer insight about uncertainty, enabling formal analysis and 

improving communication with decision and policy makers. Lightweight 

validation employs targeted program analysis and automated regression testing to 

maintain user confidence as adaptations occur.  Emergent behavior validation 

exploits the semi-automatic adaptation capability of COERCE to make exploration 

of such behavior efficient and productive. We describe our research on these three 

technologies and their impact on validating dynamically evolving simulations.  

1   Introduction 

Uncertainty pervades model assumptions, and so frequently model designers must 
base decisions on little more than informed guesses.  This condition presents both an 
opportunity and a risk.  Opportunity arises from the rich set of outcomes a model can 
produce while exercising reasonable alternatives created by uncertainty.  Risk results 
from not knowing which assumptions, and combinations of assumptions, reflect truth.  
Exploiting the opportunity while managing the risk is our ultimate goal:  we seek to 
limit the consequences of uncertainty while providing an opportunity to adapt 
simulations to meet new requirements.  We place high priority on maintaining user 
confidence in the correctness of a simulation as adaptation proceeds. 

No formal approach to representing uncertainty in model descriptions or simulation 
languages exists.  Therefore our investigation into uncertainty representation has begun 
with a clean slate and a broad opportunity.  Our approach is to explore uncertainty 
representation for all aspects of model uncertainty, and not just those that best serve the 
needs we find in simulation adaptation. However, our investigation of uncertainty 
representation methods treats support of adaptation as a high priority.  Our goal is to 
enable formal representation of potential model inputs, model outcomes, and related 
likelihoods –probabilities and plausibilities– for the purpose of reducing risk.  The 
representation formalism must support automated and semi-automated analysis, and 
improvement of communication among model designers and implementers and related 
policy and decision-making personnel and processes. We discuss our progress on 
uncertainty representation in section 2. 

Simulation adaptation, both before execution (static) and during execution 
(dynamic), is a high payoff capability that can save mechanical, human and monetary 
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resources.  Our adaptation technology, COERCE [1], exploits expert knowledge 
provided at design time for enhancing simulation adaptability both before and during 
execution. COERCE increases the potential for simulations to adapt to changes 
occurring in, for example, DDDAS environments that combine simulation and live 
data. COERCE employs software annotations, which we call “flexible points,” to 
capture expert knowledge about model assumptions and alternatives.  Flexible point 
alternatives often reflect a significant degree of uncertainty.  Treatment of uncertainty, 
which can be daunting enough for models as defined in a traditional sense, can 
become considerably more complex when interactions among alternatives for model 
assumptions and design decisions – flexible points – are also considered.  Thus arises 
the need for safeguards for ensuring user confidence in a simulation as is it progresses 
through the COERCE adaptation process 

Factors that influence the efficacy of user confidence safeguards include 
management of uncertainty, cost of meeting user confidence goals, and technical 
feasibility of tools for supporting desired guarantees.  Current software validation 
methods, which would seem to offer the best hope for maintaining user confidence, do 
not apply well to simulation adaptation.  As a rule they cost too much and require more 
information than is generally available. Similarly, technologies for validating emergent 
behaviors in simulations are nascent [2]. We view efficient validation and emergent 
behavior explanation as essential safeguards during simulation adaptation.  Thus, we 
have concluded that we must create methods for maintaining user confidence as a 
simulation is adapted, and we must provide support for exploring and validating 
emergent behaviors, all in the presence of model uncertainty, as adaptation proceeds. 
Our approaches for addressing user confidence issues include lightweight validation 
and semi-automatic emergent behavior exploration We discuss our approaches to 
lightweight validation and emergent behavior exploration in sections 3 and 4, resp. 

2   Representations of Uncertainty 

We are designing a language for the formal representation of uncertainty in modeling 
and simulation, for quantitative risk assessment. Modeling under uncertainty has been 
of paramount importance in the public and private sector for the past half century, as 
quantitative methods of analysis have been developed to take advantage of 
computational resources. Our work brings together the fields of computer science and 
risk analysis. Some prominent public policy examples of uncertainty analysis in 
simulation include the technical studies for the Yucca Mountain nuclear waste 
repository [3], the assessment reports of the Intergovernmental Panel on Climate 
Change [4], and the guidelines from the Office of Budget and Management that 
recommend formal quantitative uncertainty analysis for major rules involving annual 
economic effects of $1 billion or more [5]. 

Our uncertainty representation design effort possesses two primary goals. The first 
is representation of continuous and discrete random variables as first-class citizens in a 
programming language. We aim to employ multiple mathematical frameworks for the 
representation of random variables. Each mathematical framework displays a tradeoff 
of relative expressive power for ease of use. In following subsections, we will show 
how three mathematical frameworks can be appropriate when varying degrees of 
information are available. Probability theory suffers from three primary weaknesses 
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when representing uncertainty [6]. First, a precise probability value must be assigned 
to each element in the set of possible outcomes. It may not be possible to assign exact 
values or even assign reasonable approximations when little information is available. 
Second, probability theory imposes Laplace’s principle of insufficient reason when no 
information is available. When n mutually exclusive possible outcomes are 
indistinguishable except for their names, they must each be assigned a probability of 
1/n. Third, conflicting evidence cannot be represented in traditional probability theory. 
By assigning probabilities to individual elements, we can express neither 
incompatibility nor a cooperative effect between multiple sources of information. 

Our second design goal is the capacity to specify calibration techniques for 
uncertainty representations in all three mathematical frameworks. Modeling under 
uncertainty implies the absence of perfect information, but often partial information 
exists in the form of observations on the model’s expected behavior. Simulation 
practitioners expect to make the best possible use of the information available to 
them. A Bayesian engine is able to support the calibration of probability theory, 
possibility theory, and probability mass functions, and we consider such an approach. 

2.1   Imprecise Probabilities 

Several different mathematical systems can be used to perform uncertainty analysis. 
We will focus on probability theory, probability boxes, and the Dempster-Shafer 
theory of evidence. Probability theory is the most traditional representation of 
uncertainty and the one most familiar to non-mathematicians. The use of probability 
theory attempts to provide a quantitative analysis to answer the following three 
questions: (1) what can go wrong, (2) how likely is it that will happen, and (3) if it does 
happen, what are the consequences? [7]. Probability as a representation of subjective 
belief is common in quantitative risk analysis. Safety assessments must deal with rare 
events and thus it is difficult to assess the relative frequencies of these events [8]. 

2.2   Probability Boxes 

Probability boxes define upper and lower boundaries for the probabilities of a set of 

events [9]. These boundaries (represented by )( and )( XPXP ) can provide 

information not available using traditional probability theory.  A gambler’s 

interpretation of  )(XP is that it represents the highest price s/he is willing to pay in 

order to receive one dollar if X occurs, or receive nothing if X does not occur. 

Similarly,  )(XP represents the infimum selling price of an event, which is the lowest 

price that s/he is willing to receive in order to sell one dollar if X occurs. Probability 

boxes are the upper and lower distribution functions ( F and F ) of an event X where 

 )()( xXPxF ≤= and  )()( xXPxF ≤= . Upper and lower distribution functions 

allow an analyst to make no assumptions about the shape of the true probability 

distribution function. A series of coherency axioms ensure that (x)F)()( ≤≤ xFxF  

for all real numbers x. Probability boxes enable some separation of epistemic 
uncertainty and aleatory uncertainty [10], [11]. Under classical probability theory, the 
principle of indifference dictates one should select a uniform distribution when 
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presented with a lack of information concerning the shape of that distribution. 
Traditional probabilistic analysis eliminates the epistemic uncertainty of the model 
and can result in misleading risk assessment calculations. 

Regan et al. [12] investigated EPA calculations for Ecological Soil Screening 
Levels (Eco-SSLs) in Superfund ecological risk assessments. The study compared 
deterministic calculations of Eco-SSLs with a Monte Carlo approach and a probability 
bounds approach. Results show that Eco-SSL estimates using conservative 
deterministic methods were greater than estimates using probability bounds methods 
by two to three orders of magnitude. Median-based deterministic calculations resulted 
in estimates approximately one order of magnitude greater than conservative 
deterministic methods. Estimates based on Monte Carlo simulation generally fell 
between conservative and median-based deterministic estimates. The Monte Carlo 
simulation fails to produce a conservative estimate due to a combination of 
assumptions about dependencies between variables, and assumptions about the shape 
of the probability distribution curves. The authors “believe that probability bounds 
analysis is most useful as a tool for identifying the extent of uncertainty in model 
application and can assist in reducing this uncertainty.” 

2.3   Dempster-Shafer Theory of Evidence 

In Dempster-Shafer theory, the concept of imprecise probabilities is extended to 
account for both non-specificity and discord of available evidence [13]. Probability 
boxes account for non-specificity by propagating lower and upper bounds without 
specifying the shape of the distribution. But probability boxes require that all the 
available evidence concludes in one non-overlapping interval. Dempster-Shafer 
theory allows a decision maker to reason about several candidate probability intervals 
for a random process, even when they conflict with one another. Dempster-Shafer 
theory is formulated in terms of a function known as the basic probability assignment. 
If Ω is the set of all possible outcomes and 2Ω its power set, then a basic probability 

assignment is defined as m(A) : 2Ω → [0, 1] such that: m(Ø) = 0 and ∑
Ω

∈

=

2

1)(
A

Am . 

Helton et al. [14] present a Dempster-Shafer risk analysis of a hypothetical safety 
system that is exposed to fire. The safety system consists of one weak link (WL) 
component and one strong link (SL) component that are both exposed to thermal 
heating. Both components will ultimately fail at sufficiently high temperatures. The 
weak link component is designed to fail safe during accidents and render the system 
inoperational. The strong link component is designed to be robust and resistant to 
extreme environments. Risk analysis is performed to assess the likelihood that the WL 
component will fail first. A time-dependent thermal response curve is used to model 
the high temperature scenario. The model contains 11 uncertain parameters such as 
initial temperatures, maximum temperatures, thermal constants, frequency responses, 
and expected values and standard deviations of normal distributions. 

Dempster-Shafer theory enables the expression of several forms of partial 
information concerning uncertain parameters. For example, peak amplitude of the WL 
temperature transient (T) was measured in laboratory environments. Three 
measurement techniques resulted in different recorded intervals for the parameter: T1 
= −500 ± 40°C, T2 = −1000 ± 60°C, T3 = −1800 ± 80°C. All three sources are 
considered equally credible, yet the intervals give conflicting information. Equal 
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credibility can be expressed by assigning m(T1) = m(T2) = m(T3) = 1/3. Evidence 
theory can also express nested probability structures. The thermal heating time 
constant (H) of the WL temperature transient is expressed with the following 
confidence intervals: H1 = 0.27 ≤ H ≤ 0.30 min−1 with 30% confidence, H2 = 0.25 ≤ H 
≤ 0.35 min−1 with 50% confidence, and H3 = 0.20 ≤ H ≤ 0.40 min−1 with 100% 
confidence. H1, H2, and H3 are nested intervals that can be interpreted as plausibility 
measurements on H. Calculating backwards from the plausibility measurements 
yields the basic probability assignments m(H1) = 0.3, m(H2) = 0.2, and m(H3) = 0.5.  

Formal representations of uncertainty can be treated as sources of information 
regarding both model flexibility and bounds on model correctness.  In the following 
sections we report on our approach to ensuring user confidence in model correctness 
as alternatives are explored in the COERCE adaptation process, and we report on 
exploiting the flexibility that representations of uncertainties present for validating 
emergent behaviors in simulation execution. 

3   Lightweight Validation 

Automated lightweight validation is meant to maintain user confidence that a 
simulation adaptation is proceeding in accordance with expectations.  The approach is 
triggered when a user explores alternatives that uncertainty and model assumptions 
present, and then requires assurance that certain correctness properties have been 
maintained. A subset of requirements –correctness properties–  most important to the 
user is identified, thus reducing analysis cost. This approach reflects a lightweight 
cost-efficient analysis that builds confidence, as a replacement for traditionally 
expensive, full validation or even regression testing methods.   The concept is 
designed and parts have been tested as we discuss more below. 

While COERCE improves the cost-effectiveness of simulation adaptation, there is 
a risk of introducing errors into the simulation during adaptation.  When changes are 
made through the adaptation process, there may be inconsistencies and even conflicts 
among the changes. Therefore, the results of the adaptations must be validated or 
verified. Complete validation using statistical methods [15] is generally too expensive 
to be applied at each step of the adaptation process and should be applied only after a 
user believes that completed adaptations will not be reversed. 

Our work has focused on using abstraction methods to improve the cost-
effectiveness of validation [16]. We have identified two uses of abstraction: guiding 
optimization and checking coercion. We have explored extensions of existing 
abstraction methods such as program slicing, data approximation, behavior reduction 
and decomposition, [17, 18], and we explored an abstraction based on partial traces 
[19]. Our study of the adaptation of an abstract bicyclist simulation demonstrated the 
benefit of using abstraction methods. With a data approximation method, it took three 
hours to filter out 12.4% of invalid combinations of flexible point values. With partial 
trace abstraction it took five minutes to filter 31.6% of invalid combinations. With a 
control abstraction method, our results showed that previously determined optimal 
flexible point bindings did not extrapolate to similar but different paths for the 
bicyclist.  Of the abstraction tools we have explored, fully-automated program slicing 
is one of the most promising. We have developed a prototype program slicer based on 
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the program analysis tool, SOOT [20]. The slicer can perform inter-procedural slicing 
of Java programs using SOOT’s program analysis framework. 

Future work will employ impact analysis.  Software impact analysis concerns 
estimating portions of software that can be affected if a proposed software change is 
made. The approach we envision will operate as follows.  First, a subset of 
requirements, represented as correctness properties, is identified to help maintain user 
confidence in changes brought about by an adaptation, and to reduce analysis cost. 
Once the correctness properties and changes are known, impact analysis is performed 
to extract an impact set within the software. Built on this impact set, automated test 
case generation techniques are employed to generate test cases targeted specifically at 
the changes. Then, regression testing is employed using the test cases generated to 
validate correctness properties. If faults are detected, the adaptation process resumes 
until another solution is found.  One contribution of our work beyond simulation 
adaptation will be our new methods for automated generation of test cases. 

4   Validating Emergent Behaviors 

Simulation behavior is emergent if it is unexpected and stems from interactions of 
underlying model components. Emergent behavior can be beneficial for the insight it 
provides. Emergent behavior can be harmful if it reflects an error in model 
construction.  Because models often include a great deal of uncertainty, it is important 
that users have tools available for establishing the validity of emergent behaviors. 

Validation of emergent behaviors requires an exploration capability that extends a 
model beyond its original intended use, so that users can test hypotheses about the 
characteristics of emergent behaviors. Need for a model extension capability requires 
adaptation which COERCE supports [1, 19]. We call our adaptation-based 
exploration process Explanation Exploration. Explanation Exploration (EE) allows a 
user to observe characteristics of emergent behavior as a simulated phenomenon is 
semi-automatically driven towards conditions of interest, as we explain further below. 

Multiple advantages arise as a result of using COERCE: 1) COERCE flexible 
points enable capture of a broader range of model abstraction alternatives (both 
structural and parametric [19]) than a typical parameterized approach supports,  2) 
because COERCE employs semi-automated search methods, users can efficiently 
explore questions they might not have otherwise investigated, and 3) users can 
explore relationships between simulation behaviors they understand, but do not 
necessarily know how to induce, directly or indirectly, and emergent behaviors.  

What constitutes a behavior can vary.  Of importance to us is how a user relates 
choices about flexible points and knowledge of uncertainty to behaviors, and how 
behaviors are related to each other.  An emergent behavior, E, occurs when some subset 
of observable simulation behaviors exhibits a pattern of unexpected behavior(s) across a 
set of simulation trials.  An emergent behavior in a sailboat simulation may be: “the 
velocity of the sailboat is sometimes greater than the true wind speed when the sailboat’s 
orientation is near perpendicular to the true wind direction.” Given an emergent behavior, 
a user must establish if expectations regarding simulation behaviors need to be modified 
to include the emergent behavior.  Alternatively the user may decide the emergent 
behavior is an error and not valid.  EE facilitates this decision process.  The user 
generally needs to formulate hypotheses about the relationship between alternatives 
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(arising from flexible points or uncertainties) and variations of E, manifested as a 
function of bindings chosen for the flexible points.  

A user will identify either a direct coupling between a set of alternatives (e.g. 
flexible points) and emergent behaviors, or an indirect coupling.  Informally a direct 
coupling hypothesis is: 

Direct Coupling Hypothesis: Within selected sets of bindings for a selected set of 
flexible points, predictable behavior Edc related to E will be manifested in accordance 
with user expectations. 

Exploration of direct couplings can be conducted in a straight-forward manner: 
alternatives for flexible point bindings can be tested and impact on emergent 
behaviors can be analyzed directly.  Indirect couplings pose more interesting 
challenges because a user may not be able to hypothesize a direct link between 
alternatives (e.g. flexible points), bindings for those flexible points and expectations 
about an emergent behavior.  However, it may be possible to identify instrumentable 
conditions within the simulation that can be related directly to emergent behavior 
expectations.  If the user can then identify flexible points that relate directly to the 
intermediate conditions then a composition of the direct relationships yields a direct 
relationship between the flexible points and the emergent behavior.  However, it is 
often the case that the user does not know how to make the intermediate conditions 
occur directly.  If s/he can offer possible relevant sets of flexible points and bindings 
then a hypothesis may be testable with the support of search methods, such as 
COERCE.  Informally an indirect coupling hypothesis  is:  

Indirect Coupling Hypothesis: For a range of allowable sets of bindings for a range 
of allowable flexible points, there are cases when intermediate condition C arises. 
When C arises, behaviors Eic related to emergent behaviors E will be manifested in 
accordance with user expectations. 

Because the user does not know which specific flexible point sets or bindings will 
cause condition C to arise, search will be employed. The relationship between C and 
Eic is conjecture on the part of the user, to be established by the outcome of testing the 
indirect coupling hypothesis. 

5   Summary 

Model uncertainty presents a significant challenge to model and simulation designers, 
implementers and users and the policy and decision makers who often depend on their 
product. Model adaptation to satisfy new requirements, whether of a static (before 
execution time) nature, or a DDDAS dynamically adapting nature, compounds the 
challenge. Without methods for harnessing uncertainty and managing user confidence, 
particularly when model adaptation takes place, simulation designers will continue to 
face stiff challenges to the validity of their models.  Here we have presented our 
approach to formal representation of uncertainty in model descriptions and simulations 
and the methods we have designed (and partially implemented) for maintaining user 
confidence in a model.  Our analysis is not complete, but our objectives are clear and 
our designs are mature, as reflected in the work presented here. 
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