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SUMMARY

T he relentless process of 
tracking and remediating 
vulnerabilities is a 

top concern for cybersecurity 
professionals.  The key challenge 
is trying to identify a remediation 
scheme specific to in-house, 
organizational objectives.  Without 
a strategy, the result is a patchwork 
of fixes applied to a tide of 
vulnerabilities, any one of which 
could be the point of failure in an 
otherwise formidable defense.  Given 
that few vulnerabilities are a focus 
of real-world attacks, a practical 
remediation strategy is to identify 
vulnerabilities likely to be exploited 
and focus efforts toward remediating 
those vulnerabilities first.

The goal of this research is to 
demonstrate that aggregating and 
synthesizing readily accessible, public 
data sources to provide personalized, 
automated recommendations for 
organizations to prioritize their 
vulnerability management strategy 
will offer significant improvements 
over using the Common 
Vulnerability Scoring System 
(CVSS).  A framework is provided for 
vulnerability management specifically 
focused on mitigating threats 
using adversary criteria derived 
from MITRE adversarial tactics, 
techniques, and common knowledge 
(ATT&CK).  The approach here is 

tested by identifying vulnerabilities 
in software associated with six 
universities and four government 
facilities.  Ranking policy 
performance is measured using the 
Normalized Discounted Cumulative 
Gain (nDCG).  Results show an 
average 71.5%–91.3% improvement 
toward identifying vulnerabilities 
likely to be targeted and exploited by 
cyber threat actors.  The return on 
investment (ROI) of patching using 
these policies results in a savings of 
23.3%–25.5% in annualized costs.  
The results demonstrate the efficacy 
of creating knowledge graphs to link 
large datasets to facilitate semantic 
queries and create data-driven, 
flexible ranking policies.

INTRODUCTION
The relentless process of tracking 
and prioritizing vulnerabilities 
for patching is a top concern 
for cybersecurity professionals 
[1].  Ideally, every organization 
would apply the security updates 
for their operating systems and 
critical applications as soon as 
possible after updates are released.  
However, since patches from top 
vendors are delivered in monthly 
blocks on “Patch Tuesday,” system 
administrators often find it difficult 
to select which patches to apply 
and identify which ones are not 
applicable [2–4].  Patch Tuesday 

is the term used to refer to the 
second Tuesday of each month when 
Microsoft, Adobe, Oracle, and others 
regularly release software patches 
for their software products [5].  
Vulnerability prioritization is further 
hampered when companies delay 
the automatic installation of security 
updates in case the patch proves 
more troublesome than expected  
[6, 7].

Successful vulnerability management 
must balance two opposing goals:  
(1) coverage (fix everything that 
matters) and (2) efficiency (delay 
or deprioritize what does not 
matter) [8].  In industry, the most 
prevalent vulnerability management 
strategy identifies the base Common 
Vulnerability Scoring System 
(CVSS) scores for all identified 
vulnerabilities and patches them in 
descending score order (10 being 
the highest to 0 being the lowest) 
[9–11].  Unfortunately, research has 
shown that CVSS scores are not 
strongly linked to the emergence 
of new cyber exploits, and system 
administrators can be overwhelmed 
by the volume of vulnerabilities 
with nearly indistinguishable high 
scores [12].  While a CVSS score 
indicates vulnerability severity, it 
does not predict the exploit potential 
of the underlying software flaw 
or the operational impact to the 
organization.
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Aggregating and synthesizing readily 
accessible, public data sources can 
provide an automated patch priority 
ranking by understanding what 
vulnerabilities and adversaries are 
relevant to an organization.  The 
proposed relevance-based ranking 
model enables businesses to adopt a 
proactive strategy for vulnerability 
management [13].  Such an approach 
delivers the most efficient use of 
people, tools, time, and dollars to 
address cyber threats that pose the 
greatest operational risk.  Just as search 
engines provide a better ranking of 
results based on personalization, so will 
the ranking of vulnerabilities.  Within 
this context, an approach is sought 
to define cybersecurity vulnerability 
mitigation that improves upon 
rankings employing strategies based 
on the global CVSS metrics associated 
with known software vulnerabilities 
published in the National Vulnerability 
Database (NVD) [14].

The path to achieve this goal requires 
gathering, fusing, and analyzing 
relevant and available data discussed 
in this article.  Specifically, it proceeds 
as follows.  The “Data and Methods” 
section describes the aggregated 
public data sources, methods used to 
synthesize them, and the framework 
for ranking software vulnerabilities 
regarding different organizations  
for patching.  The “Evaluation  
and Results” section evaluates the 
approach and presents the results.   
The “Discussions” section examines 
how the contributions are positioned 

in the software vulnerability 
management research landscape and 
identifies several limitations to the 
work.  Ultimately, the study ends  
with the “Conclusions” section.

Data and Methods

The goal for this study is to remediate 
vulnerabilities in the most efficient 
way possible.  This requires leveraging, 
associating, and analyzing different 
sources of cyber threat intelligence.  
The relationships among them need 
to be understood and organized 
into a structure for analysis that 
supports generating prioritized 
recommendations for effective 
vulnerability management.

These data sources are used to model 
software vulnerabilities regarding the 
skill level of cyber adversaries and their 
motivation to target a specific industry 
domain (e.g., national defense, higher 
education, finance, and health care).  
The relationships among these data 
sources and the software vulnerability’s 
life cycle are summarized in Figure 1 
to include the following data sets:

1. The Common Weakness 
Enumeration (CWE) captures data 
related to the discovery of  
a software weakness.

2. Data from the Common 
Vulnerabilities and Exposures 
(CVE) and CVSS prioritize a 
vulnerability’s severity.

3. The Exploit Database (ExploitDB), 
Department of Homeland 

Security’s Cybersecurity and 
Infrastructure Security Agency’s 
Known Exploited Vulnerabilities 
(KEV) catalog, and Exploit 
Prediction Scoring System (EPSS) 
assess the likelihood of a software 
vulnerability being exploited in the 
wild.

4. The Common Attack Pattern 
Enumeration and Classification 
(CAPEC) and MITRE ATT&CK 
knowledge base provides data on 
how to remediate and mitigate 
published exploits.

5. The NVD catalogs and reports 
vendor-provided patches to 
vulnerabilities in commercial  
or open-source software.

These data sources and their specific 
leveraged attributes are described in 
more detail next.  Highlighted are 
how they are synthesized together in a 
knowledge base to connect data about 
an adversary’s capability to exploit a 
vulnerability to execute a cyberattack 
on an organization.

Data

Software Weaknesses Dataset

The Software Weaknesses dataset 
consists of data from the CWE, which 
provides a common language for 
describing security weaknesses in 
software architecture, design, or code.  
It is an encyclopedia of hundreds 
of types of software weaknesses, 
including  buffer overflow, directory 
traversal, operating system injection, 
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race condition, cross-site scripting, 
hard-coded password, and insecure 
random numbers.  Each software 
weakness has a technical impact, with 
eight that lead to failure:  (1) read data, 
(2) modify data, (3–4) deny service 
- unreliable execution and resource 
consumption, (5) execute unauthorized 
code or commands, (6) gain privileges/
assume identity, (7) bypass protection 
mechanism, and (8) hide activities.

Vulnerability Dataset

The Vulnerability dataset is based 
on linking entries in the CVE with 
scoring information from the CVSS.  
The CVE is the authoritative source of 
publicly known vulnerabilities.  The 
CVSS is an international standard 

for measuring the severity of a 
vulnerability.  The CVSS base score 
is composed of metrics that reflect 
the intrinsic characteristics of the 
vulnerability.  Each CVE entry includes 
a unique identifier (CVE number), a 
short free-text description, and a list 
of references for additional details of 
the vulnerability (in the form of URLs).  
This information is included in the 
dataset and linked with the CVSS base 
scores for the vulnerability.

Vendor Product Dataset

The Vendor Product dataset is  
based on the Common Platform 
Enumeration (CPE).  Each entry  
(i.e., CPE-ID) defines a specific 
hardware device, operating system,  

or application software.  Entries 
marked as deprecated are excluded,  
and the CPE-IDs of interest restricted 
to those are written in U.S. English.  
This dataset contains more than 
15,000 CPE entries representing  
more than 3,000 products from  
~200 vendors.

Attack Pattern Dataset

The Attack Patterns dataset includes 
545 unique instances of CAPEC 
identifiers.  CAPEC is a comprehensive 
dictionary and classification taxonomy 
of known attacks that can be used 
by analysts, developers, testers, and 
educators to advance community 
understanding and enhance defense 
sponsored by the U.S. Department 

Figure 1.  Software Vulnerability Life Cycle Phases and Their Relationships to Public Data Sources (Source:  McCoy [13]).
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of Homeland Security.  A CAPEC 
identifier can be linked to the MITRE 
ATT&CK enterprise tactics, techniques, 
and subtechniques.  ATT&CK provides 
a common taxonomy for both offense 
and defense and has become a standard 
across many cybersecurity disciplines 
to convey threat intelligence, perform 
testing through red teaming or 
adversary emulation, and improve 
network and system defenses against 
intrusions.

ExploitDB Database

ExploitDB is based on a one-to-many 
mapping between an identified exploit 
kit (ExploitDB) to the vulnerabilities 
that are the target of that exploit 
(CVE).  It is updated daily and 
provided by MITRE.  It is augmented 
with the data from the Cybersecurity 
and Infrastructure Security Agency’s 
(CISA’s) KEV and the EPSS.  The CISA 
KEV provides real-time updates via 
email alerts when a newly identified 
CVE-ID is exploited.  The EPSS model 
is based on observations of exploitation 
attempts against vulnerabilities and 
analysis of ancillary information 
about each of those vulnerabilities and 
then uses historical events to make 
predictions about future ones.  The 
EPSS score associated with a CVE-
ID represents the probability [0–1] of 
exploitation in the wild in the next 
30 days (following score publication) 
and the percentile of the current score 
compared to all scored vulnerabilities 
with the same or lower EPSS score.

Adversary Tactics and Techniques 
Dataset

The combination of MITRE ATT&CK 
and CAPEC datasets forms the 
adversary Tactics and Techniques 
dataset.  The MITRE ATT&CK 
matrices are focused on network 
defense and describe the operational 
phases in an adversary’s life cycle.  
The matrices also detail the specific 
tactics, techniques, and procedures 
that advanced persistent threat (APT) 
groups use to execute their objectives 
while targeting, compromising, and 
operating inside a network.  Attack 
patterns enumerated by CAPEC are 
employed by adversaries through 
specific techniques described by 
MITRE ATT&CK.  The dataset 
is formed by linking the CAPEC 
attack patterns and related MITRE 
ATT&CK techniques together, enabling 
contextual understanding of the 
attack patterns within an adversary’s 
operational life cycle.

Synthesizing Data Sources 
Into a Knowledge Graph

The datasets described in the “Data” 
subsection can be combined to form 

a knowledge graph.  The purpose 
of this graph is to support queries 
to effectively rank vulnerabilities 
for mitigation.  This organizational 
structure is needed as a wealth of 
information about what vulnerabilities 
are targeted, who exploits those 
vulnerabilities, and how they currently 
exist.  However, this information 
is not organized into a structure 
that comprehensively defines the 
relationships among the datasets.  
The knowledge graph and its schema 
described in Figure 2 and Table 1 
address this deficiency.

Leveraging the Knowledge 
Graph to Link Vulnerabilities 
to Sector-Specific Threat 
Actors

The knowledge graph enables linking 
the vulnerabilities to APTs that 
target sectors within and outside the 
United States.  It describes what data 
processing is required to populate the 
knowledge graph and how it links the 
data together once populated.

Defining a Standard Set of Sectors

The critical infrastructure (CI) 
sectors denoted by the Department 
of Homeland Security (DHS) reflect 
assets, systems, and networks that are 
vital enough to the United States that 
when incapacitating or destroying 
them, it would have a debilitating effect 
on national security, economics, public 
health, or public safety [15].  Sectors 
can also be divided into subsectors 
[16].  The CI sectors and subsectors are 

ATT&CK provides a common 

taxonomy for both offense 

and defense and has become 

a standard across many 

cybersecurity disciplines.

36 CSIAC Journal  //  2024 TABLE OF  
CONTENTS



used to provide an affiliation for both 
threat actors and the organizations 
they target in the knowledge graph.

Defining Standard Locations

The knowledge graph requires a 
standard nomenclature to determine 
the country or region of origin for 
cyber threat actors and country of 
residence for organizations they target 
for attack.  To meet this requirement, 
the U.S. State Department’s list of 
independent states is leveraged.  In 
this list, the term “independent state” 
refers to people politically organized 
into a sovereign state, with a definite 
territory recognized as independent by 
the United States. 

Figure 2.  Graph Schema Representing the Entities of the Knowledge Graph and the 
Relationships Between Them (Source:  McCoy [13]).
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Assigning Attributes to Adversary 
Groups

APTs are an extension of nation-
states’ military forces because of the 
potential damages and chaos caused 
by successful critical infrastructure 
cyberattacks.  MITRE keeps track 
of the APTs.  Currently, it lists 129 
threat groups [17] in their Enterprise 
Framework that can be associated with 
known techniques.  Using their defined 
threat profiles, adversaries or threat 
groups employing the same tactics and 
techniques are identified.

Where Attacks Originate

For each APT group description 
provided by MITRE, natural 
language processing is used to extract 
keywords to determine the country 
or independent state from which the 
group operates.  For example, a North 
Korean state-sponsored threat group 
would be assigned to North Korea with 
the mapping.  The descriptions were 
also mined to determine year of origin 
(e.g., 2008) to ascertain each group’s 
potential longevity.  If a year was not 
explicitly stated in the description, the 
creation date of the MITRE description 
(e.g., has been active since at least 
2009) was used.

Who Attacks Each Sector

Adversarial groups relevant to 
organizations based on who they 
target for attacks were identified next 
by mapping APTs and their country 
to DHS critical infrastructure sectors.  
To accomplish this, the subject of the 
term “targets,” “targeted,” or “targeting” 

was extracted in the group description 
from MITRE.  The knowledge graph 
includes those where the United States 
is a targeted country, thus focusing on 
those attacks.  The attribution of APTs 
to sectors is shown in Table 2.  Note 
that some groups target more than one 
sector.

Relevance-Based Ranking 
Model

The goal here is to define an approach 
to cybersecurity vulnerability 
mitigation that improves upon 
rankings that employ strategies based 
on the global CVSS metrics associated 
with known software vulnerabilities 
published in the NVD.  The outcome is 

a relevance-based ranking model that 
can be employed before an adversary 
takes advantage of a particular 
vulnerability.  The model requires the 
following components:

For each APT group 

description provided by 

MITRE, natural language 

processing is used to extract 

keywords to determine the 

country or independent 

state from which the group 

operates.

Table 2.  DHS Sectors Ranked by the Number of Attack Groups Targeting Those 
Sectors Based on Mentions in MITRE ATT&CK

SECTOR GROUPS TARGETING
Government facilities 50

Information technology 33

Financial services 19

Healthcare and public health 17

Defense industrial base 14

Energy 14

Critical manufacturing 10

Communications 9

Transportation systems 7

Chemical 2

Water and wastewater systems 1

Nuclear reactors, materials, and waste 1

Emergency services 0

Dams 0

Commercial facilities 0

Food and agriculture 0
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• Profiles that describe the 
organization under evaluation in 
terms of the DHS sector and country 
in which they operate.

• Collection and normalization of a 
complete software inventory for each 
organization.

• Threat-centric ranking policy 
definitions based on attack groups  
of interest and their skill levels.

• Scoring method for each ranking 
policy.

Creating Organizational 
Profiles

A vulnerability ranking policy needs 
to consider the installed software for 
the organization under evaluation.  A 
representative set of organizations is 
identified and defined in government 
and education facilities to serve 
as organizational benchmarks for 
evaluating the vulnerability 
management approach.

Software Used in the 
Education Subsector

CollegeSimply [18] provides a list of 
Virginia colleges and sources public 
domain college data from the U.S. 
Department of Education National 

Center for Education Statistics.  Using 
the list, six universities of varying 
sizes and funding sources (public and 
private) were chosen.  The public 
universities were the University of 
Virginia (UVA), Virginia Tech (VT), 
Old Dominion University (ODU), and 
William & Mary University (W&M).  
The private universities were Regent 
University (REGENT) and Washington 
and Lee University (WLU).  For each 
university, a published list of supported 
academic software was located on the 
university’s website, and CPE-IDs were 
assigned to each piece of software.  
The full academic software listing is 
provided in McCoy [13].  A summary 
of the number of vulnerabilities found 
in the academic software associated 
with each university is shown in 
Table 3.  A “size designation” (small 
[S], medium [M], large [L], and extra-
large [XL]) was assigned based on the 
number of software products publicly 
listed.  However, this did not reflect the 
size of the university or the number 
of software products used by the 
university.

Software Used by 
Government Facilities

Government facilities do not 
routinely publish the software they 

use.  However, the “National Security 
Telecommunications and Information 
Systems Security Policy (NSTISSP) 
No. 11” requires government agencies 
to purchase only commercial security 
products that have met specified 
third-party assurance requirements 
and have been tested by an accredited 
national laboratory [19].  The list 
of certified products is available at 
https://www.commoncriteriaportal.
org/products/.  In accordance with 
NSTISSP, the “Common Criteria” is 
an internationally recognized set of 
guidelines (International Organization 
for Standardization [ISO] 15408) 
that defines a common framework 
for evaluating security features and 
capabilities of information technology 
(IT) security products against 
functional and assurance requirements 
[20].

The Common Criteria was reduced to 
the set of products certified for use in 
the United States.  CPE-IDs across all 
categories were then searched based 
on the vendor and product name.  The 
software list shown in Table 4 consists 
of applications and operating systems.  
It was generated by randomly selecting 
software from the Common Criteria 
with assigned CPE-IDs in groups of 
14, 24, 30, and 47 to approximately 

Table 3.  Academic Software Associated With Vendor Product CPE-ID

UNIT OF MEASURE W&M ODU VT REGENT UVA WLU
CPEs assigned 24 47 12 23 30 13

Software listed 33 69 22 31 49 23

Size designation M XL S M L S
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match the cardinality of the S, M, L, 
and XL university software lists.

Ranking Policy Definitions

Deciding which vulnerabilities to 
remediate is a daunting task.  In a 
perfect world, all vulnerabilities would 
be remediated as they were discovered; 
unfortunately, this does not happen.  
An exploit observed in the wild is the 
most relevant proxy for the probability 
that an exposed vulnerability can be 
used to compromise an organization’s 
network.  To that end, the predictive 
ranking policies evaluated identify 
candidate vulnerabilities that fit the 
pattern of known attack groups.  
Formally, this is the intersection of 
vulnerabilities in the software used 
by an organization and vulnerabilities 
being actively targeted by threat actors.

The criteria for the ranking policies 
using the attacker characteristics and 
targets is discussed in the “Synthesizing 
Data Sources Into a Knowledge Graph” 
subsection.  Each policy leverages 
data points in the knowledge graph to 
provide a scoring methodology that 
considers the following:

• Which threat actors use the same 
technique to initiate an attack?

• Given an industry, which threat 
actors target it?

• Given a type of attack, which 
vulnerabilities does it exploit?

• At present day, what is the 
probability of exploit?

• Given an organization, which 
vulnerabilities are present in the 
installed software?

Four different ranking policies were 
created to answer these questions.  
Each policy prioritizes different 
information based on organizational 
information preferences regarding 
specific threats.  The policies also 
include knowledge on whether an 
exploit for the CVE-ID has been 
observed.

• Policy 1:  CVSS Base Score 
Ranking – Vulnerabilities are 
remediated based on the assigned 

CVSS base score ranking from most 
severe (“critical”) to least severe 
(“low”).

• Policy 2:  APT Threat Ranking –  
Vulnerabilities are remediated 
based on the likelihood of present-
day exploit and the existence of a 
technique employed by an attack 
group that targets the industry in 
the country where the organization 
operates.

• Policy 3:  Generalized Threat 
Ranking – Vulnerabilities are 
remediated based on the likelihood 
of exploit by a low-skilled or highly-
skilled adversary that has high 
impact on the organization.

• Policy 4:  Ideal Ranking – The 
ideal ranking employs the same 
criteria as the APT and generalized 
threat rankings, Policies 2 and 3, 
but has the foreknowledge that 
a vulnerability has already been 
exploited using information from the 
ExploitDB and CISA KEV databases.

Ranking Policy 
Implementations

For each CVE-ID, 16 features using 
the cyberintelligence data sources 
are examined.  The features, which 
inform each policy and create a set 

An exploit observed in the 

wild is the most relevant 

proxy for the probability that 

an exposed vulnerability can 

be used to compromise an 

organization’s network.

Table 4.  Government (GOV) Facility Software Associated With Vendor Product CPE-ID

NUMBER OF SOFTWARE PRODUCTS GOV-S GOV-M GOV-L GOV-XL
Software assigned 14 24 30 47

Common criteria 57 57 57 57
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of relevance scores for ranking CVE-
IDs as they are published, are as 
follows:  (1) CVE-ID, (2) CVSS base 
score metrics, (3) publication date, 
(4) modification date, (5) CAPEC-ID, 
(6) CAPEC skill level, (7) ATT&CK 
technique name, (8) MITRE ATT&CK 
group ID, (9) MITRE ATT&CK group 
country of operation, (10) risk appetite, 
(11) EPSS probability of exploit, (12) 
CISA known exploit catalog, (13) 
ExploitDB, (14) organization identifier, 
(15) critical infrastructure sector, 
and (16) organization’s country of 
residence.  The source code used in 
implementing the ranking policies is 
available in McCoy [21].

Based on the policy definitions, the 
CVSS V3.1 base score is the only 
feature needed to implement Policy 
1.  The features needed to implement 
Policy 2 and its ideal version in Policy 
4 are listed in Table 5.

For Policies 2–4, a binary weighting 
[0,1] is used for each feature to 
determine its existence as applicable 

to a specific CVE-ID.  The sum of the 
categorical values is presented as the 
relevance score to rank the associated 
CVE-IDs using the logic shown in the 
algorithm provided in McCoy [13].  
The minimum assigned relevance score 
is set to 1 using this algorithm to avoid 
a long tail of nonrelevant CVE-IDs 
and ensure only relevant CVE-IDs 
associated with the organization’s 
installed software are candidates for 
ranking.

When determining what to patch, the 
setup and business disruption costs 
must be considered and weighed 
against the potential exploitation cost 
and when and how often to patch 
an enterprise system or application 
decided.  The total costs of a 
vulnerability are the sum of its direct 
costs (level of effort employed by 
human resources) and indirect costs 
(productivity losses and interruption of 
production processes after patching).  
Previous research has established 
that these costs can be measured 

in nonmonetary units based on the 
severity of the vulnerability where low 
= 0.25, medium = 1, high = 1.5, and 
critical = 3 units [22].  The economic 
cost of remediating vulnerabilities is 
evaluated using these established units.

EVALUATION AND 
RESULTS

Candidate Generation

In this study, 55,939 CVE-IDs 
published between 2019 and 2021 
were used as the corpus from which 
to identify a much smaller subset 
of candidate vulnerabilities for 
ranking.  The CVE modification date 
was used to simulate examining the 
vulnerabilities as they were published.  
A total of 3,079 unique CVE-IDs 
applied across all the government 
facilities and education subsector 
software lists.  The data and source 
code used in this evaluation are 
available in McCoy [21].

Table 5.  Policies 2 and 4 Scoring Features Using MITRE ATT&CK Data Feed to Characterize the Threat to the Organization

FEATURE SPECIFIC THREAT RELEVANCE RANK IDEAL RANK VALUE
CVSS base metric (attack vector) Network Network

DHS sector Government facilities education Government facilities education

Organization’s country United States United States

Attack group’s country China, Russia, Iran China, Russia, Iran

Risk appetite [0, 100] [0, 100]

EPSS probability 0.876 NA

CISA KEV or ExploitDB entry exists NA True

Software affected True True

Scoring range [1–6] [1–6]
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For the government facilities shown 
in Table 6, low annual vulnerability 
counts for three of the four proxy 
organizations were less than 2% of all 
CVE-IDs analyzed.  Even the largest 
government organization, GOV-XL,  
which was designed to mirror the 
breadth of software (i.e., 47 products) 
of its counterpart ODU in the 
education subsector, experienced less 
than 4% of all CVE-IDs analyzed.  
The low number of vulnerabilities in 
the sector may be attributed to the 
selection process for software products 
assigned to government facilities 
in this study, which were selected 
exclusively from the certified product 
list approved by the Common Criteria 
[19].  This outcome may provide an 
indication that the rigor imposed upon 
these products in terms of security 

requirements and ongoing evaluation 
may potentially reduce their exposure 
to published vulnerabilities.

For the education subsector shown 
in Table 7 vulnerability counts of 
less than 2% were observed for 
organizations with small amounts 
of reported software, such as VT 
and WLU.  Conversely, it was noted 
that universities who reported 
more software in use such as ODU, 
REGENT, and WM need to evaluate 
hundreds of vulnerabilities as 
candidates for remediation during  
any given year.

Figures 3 and 4 show the accumulated 
vulnerabilities by month and year for 
each organization in this study.  It is 
important to note the unpredictable 

way newly published and modified 
CVE-IDs can present themselves 
for analysis and remediation to 
an organization.  Similarly, Tables 
8 and 9 show the vulnerabilities 
for the government and education 
subsectors.  Note that WM, ODU, 
and REGENT experienced a steady 
stream of vulnerabilities across all 
three years of this study.  They also 
experienced an increase in the number 
of weeks per year during which a 
continuous remediation policy would 
be advantageous.  For ODU, note an 
increase from 42 weeks per year in 
2019 to 50 weeks per year in 2021.

Normalized, Discounted 
Cumulative Gain

Within the field of cybersecurity, 

Table 6.  Total Vulnerabilities by Year for Government (GOV) Facilities Sector

YEAR GOV-S GOV-M GOV-L GOV-XL
2019 8 41 51 102

2020 11 34 55 144

2021 16 84 140 285

Total vulnerabilities 35 159 246 531

Percentage of all vulnerabilities 0.25% 1.15% 1.77% 3.85%

Table 7.  Total Vulnerabilities by Year for Education Subsector

YEAR VT WLU REGENT WM UVA ODU
2019 14 3 1,396 1,370 188 1,457

2020 6 57 565 556 279 751

2021 15 144 1,721 1,704 639 2,026

Total vulnerabilities 35 204 3,682 3,630 1,106 4,234

Percentage of all vulnerabilities 0.25% 1.45% 26.56% 26.19% 7.98% 30.54%
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there is no consensus approach for 
measuring, testing, and comparing 
the accuracy of a ranking model.  
Therefore, this research, like others 
discussed in the “Discussion” section, 
builds upon measurements derived 
from the information retrieval (IR) 
field.  Evaluation measures for IR 
assess how well the search results from 
a recommender satisfy a given query.  
Specifically, recommender systems 
use the nDCG [23] score to evaluate 
the ranking of items (e.g., individual 
vulnerabilities) in a collection (e.g., 
NVD).

The nDCG varies from 0.0 to 1.0, 
with 1.0 representing the ideal ranking 
order.  The nDCG is commonly used 
to evaluate search engine result pages 
(SERPs), where the position of an entry 
indicates its search result relevance.  
Higher ranked pages are more likely 
to gain the consumer’s attention.  The 
same approach is applied toward 
creating a ranking list for patching 
vulnerabilities.  Order is important 
to ensure higher ranked CVE-IDs are 
considered first.  The main difficulty 
encountered when using nDCG is 

Figure 3.  Vulnerabilities by Month and Year for CVE-IDs Between 2019 and 2021 for 
the Government Facilities Sector (Source:  McCoy [13]).

Figure 4.  Vulnerabilities by Month and Year for CVE-IDs Between 2019 and 2021 for 
the Education Sector (Source:  McCoy [13]).

Table 8.  Weekly Vulnerability Traffic by Year for the Government (GOV) Facilities 
Subsector

AVERAGE VULNERABILITY MINIMUM 
VULNERABILITY

MAXIMUM 
VULNERABILITY WEEKS

Year Organization Per Week Per Week Per Week Per Year
2019 GOV-S 4 1 20 32

2019 GOV-M 3 1 9 24

2019 GOV-L 2 1 4 23

2019 GOV-XL 2 1 2 5

2020 GOV-S 4 1 13 40

2020 GOV-M 3 1 10 23

2020 GOV-L 3 1 10 16

2020 GOV-XL 2 1 3 6

2021 GOV-S 7 1 25 43

2021 GOV-M 4 1 14 40

2021 GOV-L 3 1 11 29

2021 GOV-XL 2 1 3 10

Within the field of 

cybersecurity, there is no 

consensus approach for 

measuring, testing, and 

comparing the accuracy  

of a ranking model.
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the availability of an ideal ordering 
of results when feedback (e.g., human 
judgment) is unavailable.  This 
shortcoming was faced by SERPS with 
Policy 4, introduced in the “Ranking 
Policy Implementations” subsection 
as a data-driven proxy of an ideal 
ordering of vulnerabilities.

To compare the results of rankings 
between each relevance policy and the 
ideal ranking (Policy 4), the nDCG of 
each CVE-ID for every organizational 
interaction was calculated with the 
ranking system.  The nDCG values 
were averaged for each weekly 

collection of CVE-IDs to obtain a 
measure of the average performance 
of the ranking algorithms.  The 
application of nDCG in this study is 
interpreted as follows:

1. “G” is for gain – it corresponds 
to the magnitude of each 
vulnerability’s relevance.

2. “C” is for cumulative – it refers to 
the cumulative gain, or summed 
total, of every vulnerability’s 
relevance score.

3. “D” is for discounted – it divides 
each vulnerability’s scored 
relevance by the scored relevance 

of the associated ideal policy to 
reflect the goal of having the most 
relevant vulnerabilities ranked 
toward the top of the mitigation 
lists.

4. “n” is for normalized – it divides 
discounted cumulative gain 
(DCG) scores by ideal DCG scores 
calculated for a ground truth data 
set, as represented by the relevance 
scores and ranking resulting 
from the ideal policy (i.e., Policy 
4), which used foreknowledge of 
exploited vulnerabilities contained 
within historical ExploitDB and 
CISA KEV intrusion detection 
reports.

Once the relevance value is computed 
for each CVE-ID, each entry is ranked 
based on the relevance value and the 
nDCG is computed using the following 
formulas:

   .      (1)

The cumulative gain at K is the 
sum of gains of the first K items 
recommended.  iDCGk is the maximum 
possible (ideal) DCG for a given set of 
queries, vulnerabilities, and relevance 
scores.

   .      (2)

The chart in Figure 5 illustrates 
the average values of nDCG for 
each position K based on weekly 
vulnerability collections.  K reflects the 
number of CVE-IDs to remediate.  The 
number of observations ranges from 
383 when K = 1 to 16 when K = 100.  

Table 9.  Weekly Vulnerability Traffic by Year for the Education Subsector

AVERAGE VULNERABILITY MINIMUM 
VULNERABILITY

MAXIMUM 
VULNERABILITY WEEKS

Year Organization Per Week Per Week Per Week Per Year
2019 WM 2 1 4 7

2019 ODU 1 1 1 3

2019 REGENT 35 1 442 40

2019 UVA 43 1 441 32

2019 VT 11 1 44 18

2019 WLU 35 1 444 42

2020 ODU 1 1 1 6

2020 REGENT 5 1 20 12

2020 WM 15 1 57 40

2020 UVA 15 1 58 39

2020 WLU 9 1 34 33

2020 VT 18 1 59 43

2021 ODU 3 1 4 7

2021 REGENT 7 1 23 21

2021 WM 36 1 264 48

2021 UVA 36 1 258 48

2021 WLU 15 1 120 43

2021 VT 41 1 315 50
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The x-axis reports the rank (from 1 
to 100), while the y-axis displays the 
respective value of nDCG@K.  Figure 
5 shows that the CVSS base score 
performs moderately well at the ends 
of the spectrum when K = 1 and K 
= 100.  However, the performance 
decreases when 5 ≤ K ≤ 50.  Policy 2  
is not impacted by the number of 
weekly CVE-IDs; it performs at a 
consistent level regardless of the 
number of CVE-IDs encountered.

Testing and Evaluating the 
Policies

Within the evaluation, the number 
of CVE-IDs to be evaluated each 
week can vary for each organization.  
Therefore, to calculate nDCG, the  
cumulative gain needs to be 
normalized at each ranking position 
for a chosen number of vulnerabilities.  

Tables 8 and 9 show that the average 
weekly vulnerability traffic across all 
organizations establishes a natural 
threshold of 20 CVE-IDs during a 
given week as the minimum number 
needed to apply a relevance ranking 
policy.

The GOV-XL, ODU, REGENT, 
UVA, WLU, and WM organizations 
consistently met this threshold.  
However, GOV-XL, UVA, and 
WLU were excluded from further 
examination in this section, as there 
were numerous weeks where no 
published CVE-IDs applied to the 
organization’s installed software.

For the remaining organizations with 
more than 50 weekly observations 
(ODU, REGENT, and WM), the 
necessary features were collected using 
the cyberintelligence data sources 

identified in the “Data” subsection to 
compute a relevance score, rank the 
CVE-IDs, and calculate nDCG using 
Policy 4 as the ideal ranking.  Only 
the CVSS V3.1 base score was needed 
to evaluate Policy 1.  For all ranking 
policies, the set of applicable CVE-IDs 
was ranked in descending order by 
relevance score and then subsequently 
ordered by CVE-ID to avoid ties.  The 
performance of Policy 1 was evaluated 
against the threat-centric policies 
(Policies 2 and 3).  Finally, the patch 
cost (in nonmonetary units) for the top 
20 CVE-IDs was determined, where 
low = 0.25, medium = 1, high = 1.50, 
and critical = 3.00 [22].

Measuring Ranking Quality

For the threat-centric policies (Policies 
2 and 3), the average performance was 
measured across all three years of the 
evaluation period using nDCG@20.  
China was chosen as the APT group of 
interest for vulnerabilities impacting 
ODU, REGENT, and WM since it 
contained the most frequent origin of 
APT threats against the United States 
[24].

The nDCG is measured on a scale of 
0.0 to 1.0, and a score of 1.0 indicates 
the ideal ranking order has been  
achieved.  The goal is to obtain 
an nDCG score close to 1.0 for 
each threat policy.  Table 10 shows 
the average nDCG@20 for each 
organization.  The average nDCG@20 
of 0.99 indicates Policy 2 performs 
better than Policy 1.  The average 

Figure 5.  Average Value of nDCG at Different Rank Levels (K) for CVSS Base Score vs. 
APT Threat Policy for the ODU, REGENT, and WM Organizations (Source:  McCoy [13]).
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difference in nDCG@20 of 0.41 
indicates that Policy 2 performs 71.5% 
better than Policy 1 as an indicator of 
vulnerabilities that might be targeted 
by an APT group.

In the results, the nDCG@20 measures 
for Policy 1 were in the range of 
[0.343, 1], as shown in Figure 6.  
Lower values for nDCG@20 were 
observed with Policy 1 when the 
number of vulnerabilities collected 
exceeded the minimum threshold 
(i.e., 20) by more than 1,000% (e.g., 
200+).  Higher nDCG@20 values 
were observed when the number 
of vulnerabilities were closer to the 
threshold (e.g., 20 to 30).  Policy 2 was 
minimally impacted by the number of 
vulnerabilities and was in the range of 
[0.878, 1].

Table 11 shows similar results for 
Policy 3.  The average difference in 
nDCG@20 of 0.35 indicates Policy 3 
performs 91.3% better than Policy 1 
as an indicator of vulnerabilities that 
might be targeted by a highly skilled 

cyber threat actor.  This is highlighted 
as well in Figure 7.

Using all the weekly observations  
(n = 163) across organizations, a paired 
t-test was performed to compare 
the mean of the nDCG for Policy 
1 against Policy 2 [25].  Results of 

this test indicated that there was a 
significantly large difference between 
Policy 1 [mean = 0.58, STDEV = 0.1] 
and Policy 2 [mean = 0.992, STDEV 
= 0.02], and the p-value equaled 0.  
The Policy 2 population’s nDCG@20 
average was greater than the Policy 1 
population’s average, and the difference 

Table 10.  Average Performance of Policy 1 vs. Policy 2, Where China Is the Source Region of Interest (nDCG@20)

SCHOOL YEAR CVSS BASE SCORE APT THREAT CHINA AVG. DIFF. IN nDCG KNOWN EXPLOITS
ODU 2019 0.601 0.996 0.394 4

ODU 2020 0.557 0.998 0.441 2

ODU 2021 0.571 0.986 0.415 12

REGENT 2019 0.592 0.999 0.407 2

REGENT 2020 0.557 0.998 0.441 1

REGENT 2021 0.585 0.985 0.399 12

WM 2019 0.598 0.998 0.400 3

WM 2020 0.565 0.998 0.433 1

WM 2021 0.585 0.985 0.399 12

Figure 6.  nDCG@20 for Policy 1 vs. Policy 2 for the ODU, REGENT, and WM 
Organizations (Source:  McCoy [13]).
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was large enough to be statistically 
significant.

A similar test to compare the mean of 
the nDCG for Policy 1 against Policy 
3 was performed.  Results of the 
paired t-test indicated that there was a 
significantly large difference between 
Policy 1 [mean = 0.512, STDEV = 
0.139] and Policy 3 [mean = 0.99, 

STDEV = 0.022], and the p-value 
equaled 0.  The Policy 3 population’s 
average nDCG@20 was greater than 
the Policy 1 population’s average, and 
the difference was large enough to be 
statistically significant.

These results showed that CVSS base 
score metrics did not contain a data 

element or scoring component that 
allowed enumeration of a specific 
threat.  The paired t-test indicated that 
the difference in the recommended 
ranking positions of CVE-IDs between 
policies was statistically significant 
(p-value equaled 0).  Therefore, any 
relevance ranking based solely on the 
CVSS base score would fall short of the 
organization’s specified goals.  These 
results also provided another indication 
that the severity of a vulnerability, 
as measured by its CVSS base score, 
might not be the optimal ranking 
approach for every organization.

Cost of Patch Prioritization

Past research has shown that 
organizations cannot fix all their 
known vulnerabilities.  Instead, 
they can fix 5%–20% of known 
vulnerabilities per month [26].  Here, 
the annualized cost of remediating the 
top 20 vulnerabilities produced by 
the different ranking Policies 1–3 was 
examined.  Defined by Fruhwirth et 
al., the nonmonetary units were used 

Table 11.  Average Performance of Policy 1 vs. Policy 3, With a Highly Skilled Adversary (nDCG@20)

SCHOOL YEAR CVSS BASE SCORE GENERAL THREAT HIGHLY SKILLED AVG. DIFF. IN nDCG KNOWN EXPLOITS
ODU 2019 0.543 0.988 0.444 4

ODU 2020 0.548 0.998 0.450 2

ODU 2021 0.474 0.986 0.511 12

REGENT 2019 0.528 0.995 0.467 2

REGENT 2020 0.512 0.999 0.487 1

REGENT 2021 0.500 0.984 0.484 12

WM 2019 0.538 0.992 0.454 3

WM 2020 0.520 0.999 0.478 1

WM 2021 0.499 0.984 0.485 12

Figure 7.  nDCG@20 for the Policy 1 vs. Policy 3 for the ODU, REGENT, and WM 
Organizations (Source:  McCoy [13]).
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with patching [22].  The results of this 
analysis are shown in Table 12.  In all 
cases, there is a decreased average cost 
of 23.3% when Policy 2 is used for 
prioritizing CVE-IDs for remediation.  
Specifically, Policy 2 realizes decreases 
498 units for ODU, 390.5 units for 
REGENT, and 455.75 units for WM 
over the three-year evaluation period 
when compared to Policy 1.

Table 13 shows increased savings in 
patch costs using Policy 3.  The cost 
of patching remains the same across 
all organizations using the CVSS base 

score.  However, for each organization, 
there are additional savings over using 
Policy 2.  Decreases of 548.25 units 
for ODU, 500.75 units for REGENT, 
and 499.75 for WM represent an 
average 25.6% improvement over the 
CVSS base score approach.  Policy 2 
only provided a 23.3% improvement.

Using all the weekly observations (n 
= 163) across organizations, a paired 
t-test was performed to compare the 
mean of the patch costs for Policy 1  
against Policy 2 [25].  Results of 
this test indicated that there was a 

significantly large difference between 
Policy 1 [mean = 37.025, STDEV = 
10.291] and Policy 2 [mean = 28.362, 
STDEV = 5.475], and the p-value = 
7.45e-27.  The population of Policy 
2’s average patch cost was less than 
Policy 1’s, and the difference was large 
enough to be statistically significant.

Similarly, a paired t-test to compare 
the mean of the patch costs for Policy 
1 against Policy 3 was performed [25].  
Results of this test indicated that there 
was a significantly large difference 
between Policy 1 [mean = 37.025, 

Table 13.  Difference in the Cost of Patching the Top 20 CVE-IDs for Policy 1 vs. Policy 3 From a Highly Skilled Adversary

SCHOOL YEAR CVSS BASE SCORE GENERAL THREAT COST AVERAGE SAVINGS
ODU 2019 631.50 438.50 193.00

ODU 2020 531.00 424.50 106.50

ODU 2021 994.50 745.75 248.75

REGENT 2019 604.75 412.00 192.75

REGENT 2020 375.50 294.50 81.00

REGENT 2021 960.00 733.00 227.00

WM 2019 603.75 412.50 191.25

WM 2020 374.00 296.50 77.50

WM 2021 960.00 729.00 231.00

Table 12.  Difference in the Cost of Patching the Top 20 CVE-IDs for Policy 1 vs. Policy 2, Where China Is the Source Region of Interest

SCHOOL YEAR CVSS BASE SCORE APT THREAT CHINA AVERAGE SAVINGS
ODU 2019 631.50 449.25 185.25

ODU 2020 531.00 439.00 92.00

ODU 2021 994.50 770.00 244.50

REGENT 2019 604.75 422.25 182.50

REGENT 2020 375.50 308.50 67.00

REGENT 2021 960.00 752.00 208.00

WM 2019 603.75 424.75 179.00

WM 2020 374.00 308.50 65.50

WM 2021 960.00 748.75 211.25
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STDEV = 10.291] and Policy 3 [mean 
= 27.523, STDEV = 4.905], and the 
p-value = 9.989e-30.  The population 
of Policy 3’s average patch cost was 
less than Policy 1’s, and the difference 
was large enough to be statistically 
significant.

Predicting Exploits

Only a small subset (2%–7%) of 
published vulnerabilities are exploited 
in the wild [26].  Given that such 
a small number of CVE-IDs are 
exploited, it is advantageous for 
organizations to leverage as much 

insight as possible to identify potential 
threats.  How Policy 2 can be used to 
prioritize a vulnerability with a known 
exploit is demonstrated here.  The 
ODU organization identified 39 CVE-
IDs to mitigate during the week of 23 
November 2021.

In this case study, the top 20 are 
ranked according to Policy 2, as shown 
in Table 14.  Note that three CVE-IDs 
in this group, CVE-2021-38000, CVE-
2021-30632, and CVE-2021-30633, 
have known exploits.  The CISA 
known exploits entry for CVE-2021-
38000, which impacts Google Chrome, 

is shown in Figure 8.  The entries in 
Table 14 show that all three CVE-IDs 
are identified as relevant using Policy 
2.  However, CVE-2021-38000 is 
ranked at position 29 using Policy 1 
based on its CVSS base score of 6.1 
(medium severity).  This highlights 
that when using Policy 1, CVE-2021-
38000 falls outside the top-20 range 
for remediation by IT administrators 
at ODU.  In contrast, Policy 2 elevates 
this CVE-ID to position no. 3 because 
of its high relevance score.

Table 14.  Application of Ranking Policies by ODU for Vulnerabilities Published During the Week of 23 November 2021 (Known Exploits 
Are Bolded and Highlighted in Grey)

CVE-ID CVSS BASE SCORE RELEVANCE SCORE POLICY 1 RANK POLICY 2 RANK EXPLOIT
CVE-2021-37966 4.3 6 34 1 —

CVE-2021-37999 6.1 6 28 2 —

CVE-2021-38000 6.1 6 29 3 Yes

CVE-2021-30542 8.8 2 5 4 —

CVE-2021-30543 8.8 2 6 5 —

CVE-2021-30626 8.8 2 7 6 —

CVE-2021-30627 8.8 2 8 7 —

CVE-2021-30628 8.8 2 9 8 —

CVE-2021-30629 8.8 2 10 9 —

CVE-2021-30630 4.3 2 31 10 —

CVE-2021-30632 8.8 2 11 11 Yes

CVE-2021-30633 9.6 2 2 12 Yes

CVE-2021-34423 9.8 2 1 13 —

CVE-2021-34424 7.5 2 26 14 —

CVE-2021-37956 8.8 2 12 15 —

CVE-2021-37957 8.8 2 13 16 —

CVE-2021-37958 5.4 2 30 17 —

CVE-2021-37959 8.8 2 14 18 —

CVE-2021-37961 8.8 2 15 19 —

CVE-2021-37962 8.8 2 16 20 —
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DISCUSSION
There is a myriad of existing research 
that falls within the scope of this 
work.  Related research is discussed, 
limitations of the work identified, and 
provided contributions highlighted.

Related Research

Multiple researchers have created 
ontologies to represent the 
cybersecurity domain by aggregating 
multiple sources of information 
[28–33].  This work provides the 
foundation for building automated 
tools, which reduce the scope, 
complexity, and volume of security 
data that must be managed by 
security professionals leveraged in 
this approach.  However, this research 

differs from these efforts in that 
more information and sources are 
extracted to achieve completeness in 
the knowledge graph.  In addition, 
categorization is a necessary precursor 
to the ranking policies for vulnerability 
management.  Multiple research 
efforts have shown that identifying 
and categorizing additional metadata 
about vulnerabilities, exploits, attacks, 
and targets can be beneficial [22, 
34–36].  More recently, applying text 
mining to extra additional data about 
these entities has led to models which 
predict the severity of a vulnerability 
using only text-based data [37–40].

Even with an organized understanding 
of the cyber threat domain, 
understanding how to minimize the 
cost of managing and protecting 
information assets is a challenge.   

A core component of this challenge is 
adopting a vulnerability management 
process that can detect and remediate 
known vulnerabilities [12].  A 
common approach is to remediate all 
vulnerabilities above a certain severity 
score.  However, this approach has 
been found to be suboptimal [41] and, 
in some cases, no better than randomly 
choosing vulnerabilities to remediate 
[42].  Furthermore, in many cases, it is 
infeasible to patch all the CVEs with 
the highest CVSS base scores due to 
the time and resources required for 
remediation actions.  This is because 
13.5% of the NVD vulnerabilities are 
scored between 9 and 10 [43].

This has led to extensive work in 
evaluating if the CVSS score can be 
a good predictor for vulnerability 
exploitation [44] and whether it can 
be improved by additional information 
[45–47].  Machine-learning approaches 
have been explored [48, 37] as well as 
exploit prediction models that leverage 
data from online sources generated 
by the white-hat community (i.e., 
ethical hackers) [39].  Vulnerability 
exploitation can also be modeled as 
a transition between system states 
[49–55].  However, these graphs often 
tend to be unwieldy as network size 
grows, making the identification of 
realistic paths to compromise difficult 
to achieve [56].  Customized and 
target specific ranking approaches 
also exist [43, 12, 57, 42].  However, 
these approaches assume the existence 
of site-specific threat intelligence 
information.

Figure 8.  ACISA Known Exploits Catalog Entry for CVE-2021-38000 (Source:  CISA [27]).
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Contributions of the 
Approach

Prior research has demonstrated 
the ability to examine adversary 
capabilities and vulnerability 
management and exploit prediction 
at a particular point in time or with 
isolated threat scenarios.  However, 
little research has been done to 
create an end-to-end prioritization 
approach that encompasses the entire 
vulnerability management life cycle.  
This gap is addressed by the following:

• Extracting dozens of essential 
features about the vulnerability, 
including its potential for harm, the 
degree to which it is exploitable, and 
how frequently the vulnerability is 
targeted by adversaries.

• Leveraging the ability of property 
graphs to offer a flexible schema 
where attributes can be added to 
extend the data model, creating 
hierarchies with different levels of 
granularity, and combining multiple 
dimensions to better manage big 
data.

• Performing an assessment of current 
and predicted future attacker 
activity based on known tactics and 
techniques.

• Correlating threat and exploit 
intelligence from publicly available 
authoritative sources.

• Devising an approach to convert 
raw data about threat indicators into 
contextual risk scores. 

• Identifying how important the 
affected asset is to an organization in 
any industry.

• Inferring indirect facts and hidden 
relationships, which can further 
inform the results.

Parsing real-time, open-source cyber 
threat intelligence data cannot be 
accomplished by a human analyst.  
Therefore, its correlation and analysis 
are automated using a knowledge 
graph.  Application programming 
interfaces (APIs) and data feeds 
maintained by the National Institute 
of Standards & Technology (NIST) can 
also be leveraged to provide awareness 
of the changing threat landscape while 
allowing dynamic and continuous 
assessment of the underlying network 
architecture.  This research provides 
benefits to organizations seeking to 
create high-level strategies to examine 
cybersecurity posture in a manner that 
is predictive and not just reactive.

Known Limitations

This work is not without 
limitations.  To apply the approach 
here, organizations must have a 
methodology to accurately construct 
a software inventory that can be 
correlated with an entry in the CPE 
database.  Vulnerabilities cannot be 
allocated without a CPE-ID, and low 
fidelity inventory reporting may result 
in residual cyber risk.  The relevance 
ranking policies identified can only 
be effectively applied to a known 
software architecture.  Furthermore, 

it is important to note that the attack 
group list in MITRE ATT&CK is not 
all encompassing.  A Google search 
will identify emerging APT groups 
that are not included in the MITRE’s 
enterprise matrices.  In addition, the 
proof-of-concept code entries collected 
via ExploitDB do not include a time 
component indicating when the POC 
entry was made.  As a result, it is not 
possible to discretely link the CVE-
ID’s publication or modification date 
with the subsequent appearance of 
an intrusion report.  The inclusion 
of a timestamp would have allowed 
evaluating the predictive portion of the 
policies based on a timeline of events.  
The approach here is naive regarding 
exploitation and does not consider 
the publication date for exploit code 
maturity using ExploitDB.  The 
ExploitDB to CVE mapping webpage 
is also not well covered in the internet 
archives.

Time lapse dynamics related to 
data sources also exist.  The EPSS 
probability scores and percentiles 
are dynamic and should be collected 
near the time of the CVE publication 
date.  To maintain consistency in the 

Vulnerabilities cannot be 

allocated without a CPE-ID, 

and low fidelity inventory 

reporting may result in 

residual cyber risk.
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dataset, all cyberintelligence data was 
collected and frozen for analysis as of 
31 December 2021.  Future work can 
utilize the API provided by the EPSS 
team to dynamically collect the scores 
and percentiles in real-time.  This is 
a candidate for future work.  Finally, 
the prescribed optimum ordering 
approach may not ease patch hesitancy 
or prevent a culture of “wait and see” 
regarding patching vulnerabilities.  
The policies also cannot control the 
quality of vendor patch distributions 
on Patch Tuesday that, in some cases, 
can lead to recalls later in the month.  
These scenarios are outside the scope 
of this research.  However, the ranking 
policies here can reduce the amount of 
unnecessary work spent patching CVE-
IDs that are neither applicable nor 
associated with a known cyber threat 
actor.

CONCLUSIONS
The process of tracking and 
remediating vulnerabilities is 
relentless.  The key challenge is trying 
to identify a remediation scheme 
specific to in-house, organizational 
objectives.  Without a strategy, the 
result is a patchwork of fixes applied 
to a tide of vulnerabilities, any 
one of which could be the point of 
failure in an otherwise formidable 
defense.  The goal of this research is 
to demonstrate that aggregating and 
synthesizing readily accessible, public 
data sources to provide personalized, 
automated recommendations for 

organizations to prioritize their 
vulnerability management strategy 
will offer significant improvements 
over the current state-of-the art 
solutions.  Results showed an average 
71.5%–91.3% improvement toward 
identifying vulnerabilities likely to be 
targeted and exploited by cyber threat 
actors.  The ROI of patching using 
the policies results in a savings in the 
23.3%–25.5% range for annualized 
costs.  A paired t-test demonstrates 
these findings are statistically 
significant and offer an improvement 
over the industry standard approach to 
vulnerability management.

Overall, the relevance ranking strategy 
described in this study emphasizes 
the capability of threat-centric 
scenarios for ranking and prioritizing 
vulnerabilities with due consideration 
to the threat environment.  A network 
defender, who typically must address 
thousands of exposed vulnerabilities, 
can spend fewer resources to patch 
more vulnerabilities that are much 
more likely to be exploited and of 
interest to a specific set of cyber 
threat actors.  The automated data 
aggregation within the knowledge 
graph allows the user to submit queries 
to identify new vulnerabilities that 
affect the most important software and 
servers.  This ability to differentiate 
among vulnerabilities and how they 
might be targeted by an adversary 
enhances the state of the art in 
vulnerability management.

NOTE  
This work was unfunded and performed 
as part of Corren McCoy’s Ph.D. work at 
ODU in Norfolk, VA. 
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