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Abstract

In this article, we provide an introduction to simulation for cybersecurity and focus on three

themes: (1) an overview of the cybersecurity domain; (2) a summary of notable simulation re-

search efforts for cybersecurity; and (3) a proposed way forward on how simulations could broad-

en cybersecurity efforts. The overview of cybersecurity provides readers with a foundational per-

spective of cybersecurity in the light of targets, threats, and preventive measures. The simulation

research section details the current role that simulation plays in cybersecurity, which mainly falls

on representative environment building; test, evaluate, and explore; training and exercises; risk

analysis and assessment; and humans in cybersecurity research. The proposed way forward sec-

tion posits that the advancement of collecting and accessing sociotechnological data to inform

models, the creation of new theoretical constructs, and the integration and improvement of behav-

ioral models are needed to advance cybersecurity efforts.

Key words: cybersecurity simulation, modeling and simulation, human representation in cybersecurity, cyber-physical system,

cybersecurity modeling

Introduction

Reliance on information technology (IT) has grown significantly

since the bloom of the Internet [1]. People and organizations use

technology for mission-critical tasks such as banking, personnel

management, or collaborative work. While IT makes accomplishing

such tasks more convenient, it brings about serious security chal-

lenges that need to be addressed by all parties ranging from individu-

als to governments [2].

For individuals, one of the significant challenges is the release of

personal information as a result of cyberattacks [3, 4]. Stolen identity

information is mostly used for fraudulent transactions such as loan

applications and tax returns. In 2010, there were an estimated 8.1 M

victims of identity thefts in the USA alone [5]—by 2018, that number

had risen to 14.4 M [6]. For corporations, financial losses due to

cyberattacks are immense [7]. Lewis [8] estimates the annual costs of

cybercrime to the global economy are getting close to US$500 billion,

and this does not include the losses due to a damaged reputation.

Furthermore, national security is also impacted by cyberattacks, tar-

geting mission-critical private sector contractors and critical infra-

structures, affect the stability of a country. In the USA, officials

acknowledge that critical infrastructures have been under deliberate

attacks, and repairing damages has been costly for the country [9, 10].

Furthermore, the USA is only one of the many victims of such attacks.

In Estonia, for instance, cyberattackers laid siege to the banking,

media, and other infrastructures that nearly crippled the country [11].

To protect and defend themselves from cyberattacks, these countries

are increasingly outlining their position on cyberspace, cybercrime,

and cybersecurity [12]. The UK Government, for instance, dedicated

VC The Author(s) 2021. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Journal of Cybersecurity, 2021, 1–13

doi: 10.1093/cybsec/tyab005

Review Article

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/7/1/tyab005/6170701 by guest on 24 N

ovem
ber 2024

https://orcid.org/0000-0003-4307-2381


£1.9 billion over 5 years (2016–21) to fund a cybersecurity program

because they see cybersecurity as one of the top priorities for their

country [13]. Similarly, US government agencies, including the US

Department of Homeland Security, the Federal Bureau of

Investigation, and several departments of the US Armed Forces, main-

tain cybersecurity divisions. Despite these efforts, cybersecurity is still

a formidable and ever-evolving challenge because it involves a mix of

physical, software, and human systems. To understand and study this

system of systems, we currently rely on physical, emulated, and simu-

lated models.

“Physical” models are those “whose physical characteristics re-

semble the physical characteristics of the system being modeled”

[14]. In the context of cybersecurity, they are a mix of hardware and

software which are connected via a network (isolated from function-

ing networks and the Internet) to capture a representative system.

Physical models are used to test the effect of attacks or evaluate

measures of protection without affecting the real system. However,

they can be very costly [15] and do not incorporate the human

actors that interact with the real system.

“Emulators” act in the place of a real device as part of a repre-

sentative system and are usually realized as software [16, 17].

Emulators rely on virtualization or the creation of virtual machines

to represent real computers and devices. Emulators provide greater

flexibility than physical models because it is easier, faster, and more

cost-effective to make changes in design and scale [17, 18].

However, much like physical models, emulators do not take into ac-

count the human actor and the social contracts that govern the life

of an organization or society.

“Simulation models” are purposeful abstractions of physical sys-

tems [19] to explore how the complex interrelation between the

human, social, software, and hardware systems might lead to vul-

nerability or resilience. Simulation models provide a means for

examining complex interactions and changes within the system over

time, including the influence of social actors. For many domains,

there are significant insights that can be gained from the use of simu-

lation models such as ecological models that aid sustainable urban

development [20], social network analysis benefits from the applica-

tion of simulation to the understanding diffusion [21], and ad hoc

network routing [22]. Likewise, we posit that there are many bene-

fits of using simulations for cybersecurity research.

In this article, we focus on the application of simulation to the

cybersecurity domain. In this respect, we first introduce an overview

of cybersecurity (“An overview of cybersecurity” section), which

provides a characterization of cybersecurity research at large. We

use this characterization as a guiding framework to understand state

of the art in the application of simulations in the cybersecurity do-

main (“An overview of simulation research efforts for

cybersecurity” section). Lastly, we propose a way forward for simu-

lation research and application in cybersecurity (“Future directions”

section) and conclude (“Conclusion” section) with the summary of

this review article.

An overview of cybersecurity

The landscape of cybersecurity is large, ranging from individuals to

nations, and continuously evolves with new threats and counter-

measures. This dynamic nature of cybersecurity makes it challenging

to find an objective consensus on a definition. Definitions from a

sample of sources include:

i. “The state of being safe from electronic crime and the measures

taken to achieve this” [23].

ii. “The activity or process, ability or capability, or state whereby

information and communications systems and the information

contained therein are protected from and/or defended against

damage, unauthorized use or modification, or exploitation”

[24].

iii. “Cyber security is the collection of tools, policies, security con-

cepts, security safeguards, guidelines, risk management

approaches, actions, training, best practices, assurance and

technologies that can be used to protect the cyber environment

and organization and user’s assets.” [25].

iv. “Prevention of damage to, protection of, and restoration of

computers, electronic communications systems, electronic com-

munications services, wire communication, and electronic com-

munication, including information contained therein, to ensure

its availability, integrity, authentication, confidentiality, and

nonrepudiation.” [26].

Based on these definitions, we surmise that the goal of cyberse-

curity is about defending and protecting cyberspace to ensure avail-

ability, integrity, and confidentiality. In that respect, we characterize

cybersecurity along three dimensions: targets, threats, and prevent-

ive measures. These dimensions were inferred from the literature re-

view and structured as a characterization of cybersecurity

(Figure 1). Putting everything together, we define cybersecurity as

“the practice of protecting targets and their operations from threats,

through a combination of preventive measures.” The purpose of the

definition and its characterization is to provide a foundational

understanding of the different relevant components of cybersecurity

and the areas in which simulation and modeling can aid

cybersecurity.

Other characterizations, such as the taxonomy of operational

cybersecurity risk [27] and the cybersecurity management taxonomy

[28], address specific areas of cybersecurity and provide more detail

for that area. For instance, the taxonomy of operational cybersecur-

ity risk provides very detailed subcategories like “Deliberate ¼>
Vandalism” of the “Action of People.” However, with the proposed

characterization, we seek to broaden the perspective to be more in-

clusive and capture a variety of potential scenarios.

Our definition is compatible with state-of-the-art cybersecurity

concepts. The Kill Chain [29] concept of Lockheed Martin aims to

deal with advanced persistent threats (APTs), which are often

Figure 1: Characterization of cybersecurity.
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conducted as a series of dependent and well-crafted actions. In com-

parison to our definition, “targets” are identified in the

“Reconnaissance” step, while other steps from “Weaponization” to

“Actions on Objectives” are captured in the form of “threats.” The

“preventive measures” taken to break this chain are those repre-

sented as “Courses of Actions.” The Diamond Model is a well-

known intrusion activity characterization model composed of four

features, including “adversary,” “infrastructure,” “capability,” and

“victim” [30]. In the Diamond Model, “an adversary is the actor/or-

ganization responsible for utilizing a capability against the victim to

achieve their intent” [30]. Compared to our taxonomy,

“adversaries” and their “capabilities” can be represented using

“threats,” whereas the “infrastructure” and “victim” can be repre-

sented by “targets.” Since the Diamond model is based on a cyberat-

tack, “preventive measures” are not captured in their taxonomy. A

similar comparison exists with the PrEP Framework [31], which

characterizes malware attacks. The combined concept of

“propagation method,” “payload,” and “exploits” make up the

“treats on targets.” Again, preventive measures are not captured in

their taxonomy because their framework is based on the character-

ization of malware attacks. With these comparisons in place, we

provide further detail on our three main pillars of cybersecurity in

the following sections.

Targets
Targets refer to systems, data, and personnel of interests whose

breach or access can provide benefits to nonlegitimate users or par-

ties. These targets are categorized as Information and

Communications Technology (ICT), data systems, and human sys-

tems (i.e., personnel). ICT describes the physical and networked sys-

tems that have common denominators like computing power,

information processing, and computer networks that provide us the

means of accomplishing tasks with greater convenience through net-

worked infrastructures. These physical systems are often the focus

of cyberattackers. Telecommunication attacks, including distributed

denial of service (DDoS), routing attacks, and physical sabotage, to

name a few, are ever-increasing [32]. Attacks have also been perpe-

trated against “secure” networks—private computer networks not

connected to the Internet or telecommunication main infrastructure.

The case of JPMorgan Chase is perhaps one of the most alarming

ones. Peripheral devices were used to initiate the attacks; attackers

used, and even infected, automated teller machine (ATM) and

point-of-sale (POS) devices and were able to get into the bank’s sys-

tem and operate undetected for about a month [33].

Sometimes, however, the goal is to access data more than the

physical system itself. Data systems or databases contain confiden-

tial information such as financial data, personal information, and in-

formation relating to national security. While increased computing

power has provided a mechanism for vast amounts of data storage,

it has also created a target-rich environment for cyberattacks. The

attack on JPMorgan Chase’s infrastructure was a lead into their

data systems. It ended up relinquishing 76 million customer records

with unknown secrets into the attackers’ hands in addition to severe

damage to the company’s reputation [33]. In the information age,

knowledge is power, and knowledge is generally stored and trans-

ferred through data systems. During Georgia’s conflict with Russia,

Internet traffic to Georgia was rerouted through Russia and Turkey

for “data sniffing” [34]. These examples are just the tip of the ice-

berg, as of July 2019, the Identity Theft Resource Center (ITRC)

identified over 10 000 publicly-noticed data breaches in the US

alone, exposing over 1.6 billion data records collectively [35].

Targeting systems or data requires overcoming organizations’

defense mechanisms such as firewalls and intrusion detection sys-

tems (IDSs). This is often time-consuming and expensive. For this

reason, many attackers follow a way around by targeting “system

users” instead. A report from IBM reveals that large percentages of

cyber breaches involve some form of human error [36]. Similar find-

ings have been found in reports published by Verizon and Symantec

[37]. Social engineering, tricking users via deceptive means to obtain

data or access to a system, is a common way of targeting people, es-

pecially those who work in sectors critical to a nation. Back in 2011,

attackers gained access to RSA Security’s servers with the use of the

spear-phishing technique. While only one user was tricked into

opening an Excel spreadsheet attachment with an embedded file

that exploited vulnerability, it was sufficient for attackers to access

the system and export sensitive data to third-party servers [38]. A

similar incident occurred in Oak Ridge National Laboratory that

yielded a loss of data [39]. It is important to note that RSA

Security’s expertise is cybersecurity, and Oak Ridge National

Laboratory is one of the leading research laboratories of the US

Department of Energy.

Ultimately, targeting systems, data, and people have a purpose.

This purpose can be of using or selling information, modifying sys-

tems, or simply an exercise of cyber skills. The potential negative im-

pact of such attacks is called a threat.

Threats
Threats refer to “any circumstance or event with the potential to ad-

versely impact organizational operations (including mission, func-

tions, image, or reputation), organizational assets, individuals, other

organizations, or the Nation through an information system via un-

authorized access, destruction, disclosure, modification of informa-

tion, and denial of service” [40]. We refer to attacks as the

realization of threats. “Types of attacks” encompass a wide range of

possibilities that rely on a simple to very sophisticated tools and

algorithms focusing on system and data. For example, unpatched or

0-day (i.e., previously unknown) vulnerabilities provide access to a

known flaw in software that can reveal a stepping stone for attack-

ers with access and make the system susceptible to negative out-

comes; or a socially engineered attack such as a phishing email with

malware attached can relinquish system control to an attacker [41].

In an incident, US-based insurance company Anthem had millions of

customer records stolen due to a vulnerability that opened the door

to intruders [42]. More sophisticated attackers, once they gain ac-

cess, may modify the system for further actions based on actual pur-

pose. If the purpose of the attacker, for instance, is to access other

connected systems requiring high-level permissions, the attacker

likely will try escalating the privileges [43].

Another method of attacking a system is through wide-scale dis-

ruption. One of the most common ways to disrupt an Internet-

connected service is to bombard it with automated calls to exhaust

the service so it cannot serve actual users. The DDoS attack is a

coordinated, typically large-scale attack intended to overload a sys-

tem making resources unavailable to legitimate users. “Operation

Ababil” is an example DDoS attack that attempted to disrupt some

US-based banking companies [44]. A virus can cause a similar halt

to a system as happened in the South Korean banking system [45].

And while rare, an attacker may attempt to disrupt the system by

damaging or destroying it. Stuxnet is a prime example of an attack

that compromised and nearly destroyed a nuclear facility in Iran

[46].
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Preventive measures
The best cybersecurity defense is the one that stops attacks from

ever occurring. It is almost impossible to achieve as long as systems

remain connected to other systems via networks or the Internet.

Therefore, we rely on preventive measures which we categorize into

three areas: technology, education, and policy.

“Technology” encompasses the tools, techniques, and software

that detect, prevent, or stop an attack. A few of the common technolo-

gies include anti-virus software, firewalls, automated updates, and

IDSs. Antivirus software recognizes known malicious programs (e.g.,

computer viruses, worms, Trojans) using various techniques such as

pattern-based detection [47] and prevents their execution. Automated

updates ensure that systems have the most up-to-date security to elim-

inate known vulnerabilities. IDS deals with monitoring computer and

network events and analyzing them for detection of known incidents

such as policy or security violations and violation attempts [48].

Techniques (i.e., protocols and algorithms) also play a vital role in

preventing cyberattacks or deterring attackers. Authorization mecha-

nisms, for instance, are a common way to secure against unauthorized

use. Secure communication technologies may prevent exposure of

data transferred over some networking infrastructure. In these cases,

protocols like Transport Layer Security [49] and Secure Shell [50] pro-

vide a means for encrypting and protecting transferred data. Another

technique for securing systems requires setting traps for would-be

intruders. Honeypots, resources that have no inherent value except

the ability to track and gather intelligence about attacks [51], can

slow attacks, provide information about new types of attacks, and no-

tify analysts when a system is under attack.

Technology is a prominent part of securing cyberspace.

However, technology alone does not suffice. Over 90% of security

incidents list human error as a factor [36]. Prevention measures, to

be effective, must address the human component. “Education” and

“training” are vital to cybersecurity. Training ranges from teaching

users basic security concepts like safe browsing, recognizing suspi-

cious (phishing) messages, password security, understanding soft-

ware permissions, and secure data disposal, to teaching security

professionals how to recognize and react to a cyberthreat.

Organizations must also be educated in cybersecurity. This

occurs through the implementation and enforcement of “policy and

procedures.” With cyberspace being such a critical component of al-

most all organizations, it is necessary to describe acceptable uses

and responsibilities, explicitly. Documented best practices and for-

mal policies shared throughout organizations can aid users and im-

prove security. Additionally, governments are crafting laws and

determining enforcement protocols for cyberattacks. This, however,

is beyond the scope of this article.

Synthesizing this section, we surmise that the cybersecurity do-

main is a combination of technical efforts that focus on protecting

targets from threats through a mixture of preventive measures.

Efforts to develop physical, emulation, and simulation capabilities

have taken place, each with different levels of adaption [52].

Physical and emulation approaches are by far the most adopted

approaches due to the realism that they bring to activities such as ex-

perimentation and testing. Research with physical systems repre-

sents the highest fidelity possible. However, testing cyberattacks on

the Internet can have severe consequences. Alternatively, building a

duplicate system for testing is either unfeasible or costly. Emulations

allow researchers and practitioners to create virtual networks and

testbeds on which they can experiment under “specific” conditions

about system and network. Simulations, on the other hand, allow

researchers and practitioners to test an abstraction of the system

that contains only features of interest, without the need for detail,

toward answering a research question. Simulations are advanta-

geous, generally requiring less computational resources compared to

emulation and physical solutions, making it cost-effective [15] and

easier to scale to a large number in network size [53].

It is important to note that the literature provides perspectives of

cybersecurity from two viewpoints: defending targets against threats

through a combination of preventative measures and devising

attacks aimed at various targets using a multitude of threats that by-

pass preventative measures. While it is equally important to consider

both perspectives in understanding security, this work focuses on

the former view.

An overview of simulation research efforts for
cybersecurity

As a research area, simulation is an interdisciplinary endeavor with

a vast literature. Cybersecurity research is also interdisciplinary and

its literature is even larger and, making it challenging for us to truth-

fully capture the intersection of the two areas. To this end, we lever-

aged recent cybersecurity reports, our anecdotal experience from

cybersecurity simulation research and development, and discussions

with experts led us to cover five areas in our review. These are (i)

representative environment building; (ii) test, evaluate, and explore;

(iii) training and exercises; (iv) risk analysis and assessment; and (v)

examining the role of people in the cybersecurity domain. There is a

strong connection between these areas of research. Figure 2 shows

the relationship of components that emerged from our review of

simulation for cybersecurity. An operational environment, in the

lexicon of Damodaran and Couretas [54], is the targetable tool in a

simulation event. Operational environment building is foundational

to aiding our understanding of cybersecurity and providing the ne-

cessary environment, including network topology and structure for

the next research area: testing, evaluation, and exploration. These

two pieces facilitate the ability to ask “what if” questions based on

the operational environment. Another goal of simulation for cyber-

security is to aid in analyzing and assessing the overall risk of the

system and providing enhanced training capabilities and conducting

exercises. Finally, human action is introduced in cybersecurity simu-

lation to help understand the strengths and vulnerabilities that users,

attackers, and defenders bring to cybersecurity.

Representative environment building
Representative environment building refers to the creation of net-

works and connected systems. Research in cybersecurity requires a

Figure 2: Identified areas of research for simulation of cybersecurity.
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platform on which to test. Software-based network simulators and

network traffic algorithms can be used to test specific types of cyber-

attacks. Open source and commercial network simulation libraries

and tools are used for implementing network environment of simu-

lations. Early attempts of network simulators date back to the

1980s and were mainly developed to test different routing and

scheduling algorithms [55]. The use of such simulated networks was

later possible when computing power increased and cyberattacks be-

come prevalent. OMNeTþþ [56] and INET Framework for

OMNETþþ [57] are robust open-source software able to simulate a

vast array of devices such as wired/wireless communication net-

works, sensor networks, and on-chip networks, to name a few.

While not as comprehensive as OMNeTþþ, ns-3 [58] is another

popular network simulator that supports wired/wireless networks

and virtualization. ns-2 [59] is still in use as of this writing although

it was preceded by ns-3. There are many earlier open-source net-

work simulation efforts such as SSFNet [60], GTNetS [61], and

JiST/SWANS [62] which are not actively being developed or main-

tained. There are many other options for researchers to build a

simulation-based representative environment. Sarkar and Halim

[63] reviewed existing network simulators classified and compared

based on type, deployment mode, network impairments, and proto-

cols supported. Ojie and Pereira [64] provide a more recent review

but focused on the simulation of the Internet of Things.

Network simulators usually involve only representation of devi-

ces, technologies, and communication between them while missing

some critical components of a cyber scenario [52]. Others have pro-

posed to adopt a Live, Virtual, Constructive (LVC) approach to rep-

resentative environment building [54, 65, 66]. According to

Damodaran and Couretas [54]:

• Live (cyber) simulation: Real actors interact with physical sys-

tems of real computers connected to real, and usually isolated

networks.
• Virtual (cyber) simulation: Real actors interact with emulation

or simulation of networks or emulated or simulated actors inter-

act with real and usually isolated networks.
• Constructive (cyber) simulation: Simulated or emulated actors

interact with emulations or simulations of networks.

Varshney et al. [65] developed an LVC framework called

StealthNet to support testing, evaluation, and exercises using cyber-

security scenarios. Their framework involves user behavior models

representing blue and red forces. According to an example scenario

they present, red forces execute timed predefined actions in a DDoS

scenario. Therefore, it can be used to replicate a scenario, but it can-

not adapt to different evolving and dynamic conditions due to its

scripted nature. Emulytics, is an LVC platform from Sandia

National Lab that supports cyber training and testing [15]. Some of

Emulytics capabilities include mechanisms for rapid specifications

and deployment of networks, protocol support for networked devi-

ces, instantiations of networks with large numbers of nodes, and

representation of wired and wireless communications. Overall, be-

cause of the number of open-source options, simulation has allowed

more researchers and more areas of research to be positively

impacted. One such area is security testing, evaluation, and

exploration.

Test, evaluation, and exploration
The ability to explore, test, and evaluate a situation is likely the

most widely used capability of simulation because of the rapid

experimenting flexibility it provides. In one of the earlier examples,

Zhou and Lang [67] evaluated an intrusion detection algorithm

using the OPNET network simulation environment (OPNET is no

longer available). To add more, Hancock and Lamont [68] exam-

ined patterns associated with intrusion detection and aided in the

classification of network attacks. However, when the network gets

large, it becomes a challenging task to place the IDS. Puzis et al. [69]

identified the optimal placement of intrusion detection and preven-

tion systems in such large networks. Wagner et al. [70] explored par-

titioning the network into sections to complicate gaining attackers

access to the network. Bahşi et al. [71] analyzed literature to find

out the methods employed in assessing cyber impact on missions

and concluded that simulation is the dominant approach.

Cohen [72] pioneered early efforts in the simulation of cyberat-

tacks, defenses, and consequences. While Cohen’s cause and effect

model was too simplistic for practical application, his efforts

spurred the work of others. Chi et al. [73] continued the effort to

employ simulation using a discrete-event system specification

(DEVS) model with a knowledge-based learning system for the at-

tacker and a statistical analyzer for vulnerability assessment. The

simulation can classify threats, specify attack mechanisms, verify

protection mechanisms, and evaluate consequences [73].

Cho and Ben-Asher [74] developed “Defense in Breadth,” which

is an integrated defense mechanism that combines IDS, deception

systems, and moving target defense (MTD) systems. They imple-

mented stochastic Petri nets using the Stochastic Petri Net Package

(SPNP) to evaluate “the performance of a system integrated with dif-

ferent defense mechanisms” (p. 6). Deception systems here are

mechanisms like honeypots that appear to be real parts of the net-

work but are put in place to mislead the attacker and study its be-

havior. MTDs, as mentioned, enable defenders to change system

behaviors, policies, or configurations automatically such that poten-

tial attack surfaces are moved dynamically.

In terms of evaluating the effect of threats and attacks, Kotenko

and Ulanov [75] designed and developed an agent-based simulation

framework called distributed denial of service simulator

(DDoSSIM), which uses OMNeTþþ and INET Framework as the

network simulation basis, to evaluate different DDoS attack and de-

fense mechanisms formed by software agents. Almajali et al. [76]

utilized ns-2 [59] to create a network of a power grid and analyze

the resiliency of the grid in case of DoS attack on the network.

Sonchack and Aviv [77] reported on large-scale evaluation of se-

curity systems (LESS), which simulates large-scale attacks by auto-

matically configuring host agents based on background traffic

samples and current malicious traffic models. It has the capacity to

simulate 100 000 hosts with up to 5000 malicious hosts, thus pro-

viding an additional level of detail in security evaluation. Cyber

Analysis Modeling Evaluation for Operations (CAMEO) [78] mod-

eled and simulated various dynamics of a cyberecosystem such as

threats and defensive strategies. CAMEO, as the authors claim, can

be used to “verify and validate possible configurations and behavior

for cyber agile and resilient defenses, to study sensitivity to initial

configurations and discover unanticipated emergent behavior” (p.

2). Hahn and Govindarasu [79] proposed a metric to evaluate the

completeness of the implemented security mechanisms in smart grids

and also evaluate the applicability of the metric using simulation. It

is also noted that these efforts are based on measuring traffic data.

Technical systems that help recognize an attack and evaluate the

possible defenses are only effective if the appropriate responses are

executed. One aspect that is less explored in simulation for cyberse-

curity is finding conditions under which security might be vulner-

able. In this case, a simulation could find a combination of input

factors that lead to a desired (or undesired) output.
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IDSs are usually the first line of defense in an institutional setting

but they are not the only defense mechanisms to defend against mal-

ware or other malicious software. Modeling and simulation efforts

support such defense approaches. Garetto et al. [80] used a special

type of Markov chain to model the behavior of malware based on

its activity patterns in a network. Such an approach initiates new

mechanisms to catch malware other than signature-based

approaches. Similar malware dynamics have been captured in agent-

based and network simulation models to investigate the propagation

on scale-free networks [81], Wi-Fi router networks [82], and smart

grid networks [83]. Here, simulation studies allow safe testing of

real or hypothetical malware spread and evaluate potential mitiga-

tion measures.

There have been recent simulation efforts that generated datasets

for validation of a wide range of detection systems. Gore, Padilla

[84] used Markov Chains to generate feasible APT scenarios using

the Structured Threat Information eXpression language (STIX) and

seed data [85]. These plausible synthetic data provide researchers

with the ability to explore and understand scenarios that have not

yet occurred and validate against existing detection systems as well

as conduct training exercises and risk analysis. Lately, such synthetic

data generation has relied on via General Adversarial Networks too.

For instance, Lu and Li [86] and Kucuk and Yan [87] have devel-

oped systems to generate synthetic malware samples to be tested by

a classifier. We believe there is an open venue for such simulation,

especially critical domains such as the cybersecurity studies of con-

nected vehicles because real-world data of such type is not always

feasible to capture [88].

Training and exercises
Simulation can be effectively used in understanding an attack and

training for different scenarios. To this end, special units have been

established to conduct cybersecurity training and exercises at the na-

tional and institutional levels. For instance, the US Department of

Homeland Security established the National Cyber Exercise and

Planning program to support cybersecurity response plans based on

strategic exercises [89]. UK’s National Cyber Security Centre has

similar responsibilities [90]. The NATO Cooperative Cyber Defence

Centre of Excellence is responsible for organizing joint exercises

regarding both technical and strategic aspects of cybersecurity [91].

There are many notable training exercises that involve a form of

simulation organized by institutions listed above. A tabletop cyber

training exercise called Waking Shark II drew approximately 220

participants from UK Government agencies, banks, and financial

institutions. In the exercise, they simulated a disruption in the

wholesale market with the goal of understanding the impact of

cyberattacks and exercise communication flows between firms. The

US Department of Homeland Security has conducted a similar but

more comprehensive exercise called Cyber Storm since 2006.

According to the official report, the latest Cyber Storm event (Cyber

Storm VI) hosted a wide range of participants from “federal, state,

local, tribal and territorial entities and the private sector” [92]. The

goals of the exercise are reported as cybersecurity preparedness and

response in order to develop and revise plans and procedures.

These large-scale, hypothetical scenarios provide a positive

learning experience for the participants [93]. However, it is often

difficult to convene the number of people necessary, and such large-

scale gatherings are not suitable for many small to medium-size busi-

nesses. Self-paced exercises and tools are crucial to fill this gap. The

UK’s “Exercise in a Box” tool is a great example to satisfy this need.

It focuses on organizational practices regarding a hypothetical cyber

incident and response.

An alternative technique used for training is a video game-based

simulation. Current cyber training games include CyberProtect used

by the Department of Defense and the CyberCIEGE used by the US

Navy [94]. Such game-based trainings focus on information assur-

ance and understanding of cause-effect dynamics. There are also sys-

tems that generate learning through competition. UC Santa Barbara

host the International Capture the Flag (iCFT) competition and

SANS Institute host NetWars [95] that provide researchers an op-

portunity to learn about attack behaviors in a safe environment.

CyberNEXS is used to facilitate cyberdefense competitions [95].

iCFT is geared toward university students, although it is not limited

to them. NetWars and CyberNEXS engage high school students.

Training and engaging the widest possible audience in cyberaware-

ness and security are the objectives of the US National Initiative for

Cybersecurity Education [96]. Simulations and competitions support

such significant initiatives.

Risk analysis and assessment
As previously stated, the goal of cybersecurity is defending and pro-

tecting cyberspace through preventive measures. Creating a repre-

sentative operational environment for testing, evaluating, and

training against potential attacks and strategic defenses is an essen-

tial element. However, the size and scope of potential cyberattacks

make total security impossible. Systems still are exposed to risks

that can be analyzed and mitigated.

Risk analysis is a function that examines the likelihood of a

negative outcome. When applying this concept to cybersecurity,

threats are often measured regarding (i) the probability of a type of

attack, (ii) the probability of attack success, and (iii) loss associated

with a successful attack [97–99]. However, quantifying a loss is not

a simple task in cyberspace [100]. Losses are time-dependent, not

surfacing until a breach is discovered, and can reduce future value

such as the loss of intellectual property. Losses can be third-party

service provider-dependent—that is, interdependencies can create a

loss for an entity that was not directly attacked. There are several

approaches to risk analysis: probability risk assessment (PRA), at-

tack tree analysis (ATA), fault tree analysis (FTA), and failure mode

effect analysis (FMEA).

PRA quantifies risks based on statistical probabilities. PRA has

general stages: identify, quantify, evaluate, and accept [101, 102].

PRA is a theoretically sound approach and has been applied in dif-

ferent scenarios, such as DDoS attacks against a distance learning

system [103] and power grid generation losses. Monte Carlo simula-

tions are often applied to approximate the loss of value. Despite

these merits, PRA still suffers from several challenges when applied

to cybersecurity: (i) historical databases are not maintained; (ii) des-

pite a significant number of breaches, security data are not common-

ly shared; and (iii) the existing data is difficult to analyze for large,

complex networks [102]. To this end, there are a vast number of

efforts to encourage and incentivize cyber intelligence data standard-

ization, use, and share [104, 105]. For many organizations, the deci-

sion to participate in cyber intelligence sharing programs become a

perfect case for game theoretic modeling efforts. Researchers have

applied both standard and evolutionary game theoretic frameworks

in this domain to improve the availability of data for researchers

[106, 107].

Attack trees provide a formal means of describing and analyzing

the security of systems based on varying attacks [108]. Simulations

have been used in both the generation and evaluation of attack trees.
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The attack tree generation involves modeling of the attacker and

running it to simulate attacks, which are used to generate the tree

[109]. The evaluation of attack trees involves representing the sys-

tem using a suitable technique and conduct Monte Carlo runs [110].

FTA uses systematic backward reasoning to determine probabilities,

and FMEA uses a forward-inductive approach to do the same.

These methods only examine a single fault [111].

More recently, researchers have used simulation to analyze risk

across complex and interdependent systems. Charitoudi and Blyth

[112] used agent-based modeling and simulation (ABMS) to esti-

mate the cascading effects of an attack on a supply chain. Rybnicek

et al. [113] combined Game Theory and ABMS to study the impact

that an attack (and the subsequent defense) on critical infrastruc-

ture. Wang et al. [114] presented a simulation environment for ana-

lyzing and assessing the security Supervisory Control and Data

Acquisition (SCADA) systems. The environment allows researchers

to model vulnerability exploitation to determine the scope of the ef-

fect. Musman and Turner [115] followed a game theoretic approach

to cybersecurity risk management with a cybersecurity game (CSG).

The CSG uses models to describe the system, threat environment,

and defender capabilities. The holistic approach is designed “for

system-level analysis to inform decision-makers of good security de-

sign principles, targeted improvements, cost-effective risk reduction

investments, and where defenses should be deployed” (p. 5). The

types and probability of attacks, as well as the cascading effect of

the interdependencies, make assessing risk in cybersecurity difficult.

This is further complicated by the human factor [116]. Whether it is

a careless user, a determined attacker, a skilled defender, or an in-

sider, people are central to the use and misuse of cyberspace.

Humans in cybersecurity
Attackers, cybersecurity analysts (CSA), system administrators, and

general system users interact to shape cyberspace today. Therefore,

each must be considered when studying cybersecurity. Attackers can

be script kiddies, state hackers, organized crime groups, insider at-

tacker, hobbyist, hacktivist, legitimate penetration testers, or terror-

ist. Their role in cyberspace is defined by their skill, knowledge,

resources, access, and motives or SKRAM [117]. Technology has

improved the defense of cyber systems; however, the defense is still

heavily dependent on who takes care of the system and who has ac-

cess to it.

Human actions as they relate to simulation for cybersecurity

have been far less explored compared to cyber systems especially

when considering criminal behavior. Several simulations have been

designed to explore network intrusion and other forms of cyberat-

tacks. Kotenko [118], for example, modeled a DDoS attack, and

Razak et al. [119] simulated network intrusions. However, these

simulations do not specifically portray the attacker. Early models

contained pre-scripted, static patterns, for attacker agents to follow

[120]. These models eventually gave way to game theoretic and cog-

nitive models [121], which provide a useful characterization of the

initiation of an attack but ignore a host of other social contexts—

user interactions, risk tolerance, social learning to name a few. Even

more recent network segmentation models such as AVAIL [122]

that improve on security simulations by evolving both attacker and

defender strategies lack a dynamic behavioral component. Schultz

[123], by contrast, examines indicators such as deliberate markers,

meaningful errors, preparatory behavior, correlated usage patterns,

verbal behavior, and personality traits to predict who an active in-

sider threat might be. Along similar lines, Vernon-Bido et al. [124]

investigated factors (group size, attack success rate, and

opportunity) that turn a predisposed user into a cyberattacker.

Moreover, Paternoster and Simpson [125], Nagin and Paternoster

[126], and Hu et al. [127], used the rational choice theory to model

committing a crime. These last few examples are not simulation

models but can also help determining the threats that they may

cause.

While attackers attempt to find unauthorized ways to use the

system, CSAs must evaluate information provided by the systems to

determine the level of potential risk. The risk message itself, the

means of communication, and the individual decision-making pro-

cess all influence the reaction to risk and alerts [128]. There is only a

limited number of models on CSA behavior like Rajivan et al. [129]

who developed an agent-based model to capture the cooperation of

CSAs to share knowledge of attack detection. The model simulates

the effectiveness of collaboration in increasing the number of alerts

resolved.

Representing users in cybersecurity simulation is not widely

researched. The work of Pussep et al. [130] and Blythe et al. [131] is

just a couple of reported research. Blythe et al. [131], for instance,

simulate system users as BDI (belief, desire, intention) agents accom-

plishing their routine tasks and communicating with each other.

When a cyberattack is simulated, the study captures user resiliency,

changes in the communication patterns, and how tasks are affected.

Again, this cognitive approach captures the human as a rational

decision-maker while leaving out behavioral complexities that may

be more telling when considering situations like attacks based on so-

cial engineering [52].

A summary
The studies reviewed in this section are by no means exhaustive; ra-

ther they are a sample of the breadth of simulation for cybersecurity.

Table 1 summarizes many of the studies presented throughout this

section and highlights how they relate to the target, threat, and pre-

ventive measure characterization proposed in “An overview of

cybersecurity” section. The table provides a quick reference for stud-

ies by purpose, coverage within the taxonomical representation, and

simulation type.

The “purpose” column shows what the simulation is built for

based on the five identified review topics. “Coverage in

cybersecurity” column shows what areas of cybersecurity landscape

(threats, targets, and preventive measures) these studies cover.

“Type” column indicates the nature of the simulation type whether

it is a platform, model, or others. Other, in this case, refers to simu-

lation exercises that combine platform, scenarios, and models.

“Names/References” column indicates citation information for

studies.

Table 1 demonstrates the level of work that exists in simulation

for cybersecurity. However, it also hints at the lack of focused work

in certain areas. The experience of studies involving people provides

insight into previously unimagined behavior by attackers and

defenders. From this, we can infer that our risk analysis might also

be upended when measuring the role individuals play in an organiza-

tion. Models developed at the Computer Emergency Response Team

at Carnegie Mellon [133], for instance, provide insight into what

factors and dynamics that may lead individuals to become insiders.

As such, these types of models provide evaluation and exploration

capabilities for considering preventive measures. Similarly, Moskal

et al. [134] considered attacker types to assess cyber threats through

simulation. They examine network vulnerabilities and system con-

figurations but also incorporate changes in the threat level of the

network when the attacker is added. Adding the behavioral
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Table 1: Summary of the surveyed papers according to their purpose, coverage in cybersecurity, and type

Purpose Coverage in cybersecurity Type Name (reference)

Representative

env. building

Test,

evaluation,

and exploration

Training

and

exercises

Risk analysis

and

assessment

Humans in

cybersecurity

Targets Threats Preventive

measures

� � Platform • OMNeTþþ [56] with INET

Framework [57]
• ns-3 [58]
• ns-2 [59]
• SSFNet [60]
• GTNetS [61]
• JiST/SWANS [62]

� � � � � Platform • LESS [77]
• CAMEO [78]
• Kotenko and Ulanov [75]
• Kotenko [118]

� � � � � � Platform • StealthNet [65]

� � � � Platform • Emulytics [15]

� � � Other • Walking Shark II [93]
• Cyber Storm [92]

� � � � � Platform • CyberProtect; CyberCIEGE [94];

Exercise in a Box

� � � � Model • Zhou and Lang [67]
• Hancock and Lamont [68]
• Puzis et al. [69]
• Wagner et al. [70]
• Cohen [72]
• Chi, Park [73]
• Cho and Ben-Asher [74]
• Almajali et al. [76]
• Hahn and Govindarasu [79]
• Razak et al. [119]

� � � Model • Garetto et al. [80]
• Hosseini et al. [81]
• Eder-Neuhauser et al. [83]

� � � � Model • Gore, Padilla [84]
• Lu and Li [86]
• Kucuk and Yan [87]

� � � � Model • Kavak et al. [82]
• Keskin et al. [103]
• Tatar et al. [132]

� � Model • Tosh et al. [106, 107]

� � Model • Karray et al. [109]

� � � Model • Dalton et al. [110]

� � � � � Model • Hamilton and Hamilton [120]
• Dutt et al. [121]

� � � � � Model • Charitoudi and Blyth [112]
• Rybnicek et al. [113]
• Musman and Turner [115]

� � � � � Platform • Wang, Fang [114]

� � � � � Model • AVAIL [122]

� � � � Model • Vernon-Bido et al. [124]
• Rajivan et al. [129]
• Pussep et al. [130]
• Blythe et al. [131]
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component to test beds and traffic generators like the Lincoln

Adaptable Real-time Information Assurance Testbed or LARIAT

[135] will aid in the advancement of cybersecurity simulations.

There are drawbacks related to modeling a system of systems

like cybersecurity. According to Windrum et al. [136], designing

representative models for simulation has several core issues of valid-

ation: (i) models are generally abstractions that focus on relation-

ships in isolation of the real, and often unknown, system (ii) models

are designed under assumptions, some of which may change with

empirical data while others are never subjected to empirical valid-

ation (iii) the number of variables used to describe the model are

limited, many variables are simplified or omitted to aid in under-

standing a particular relationship and (iv) models represent a pos-

sible theory based on data; however, data can also support alternate

theories; and testing and falsifying a hypothesis in isolation is not ac-

curate as the systems do not operate in isolation.

Simulation for cybersecurity is found in operational environment

building as well as in testing, evaluating, training, and risk analyzing

phases of cybersecurity. The elements of complexity, interdepend-

ence, and social connectivity show why simulation is an effective

tool for this research. However, there is still a lot more potential

when it comes to the use of simulation for cybersecurity.

Future directions

Cyberspace is a sociotechnical realm, and simulation is probably the

best tool available to explore this integration. Simulation provides

an arena for integrating operational environments with human be-

havior models to analyze the vulnerability of a network structure

given different types of users. Simulations give insight into the pos-

sible effects of the use and misuse of cyber systems. In an intercon-

nected society, simulation can show how attacks to one critical

infrastructure strain the entire system. As such, simulations can aid

in understanding the ripple effects of cyberattacks on the system and

society. We believe that to capture these dynamics effectively, there

is a need for more focused efforts. Our review in “An overview of

simulation research efforts for cybersecurity” section and current

trends in cybersecurity reveal that many independent efforts address

a piece in cybersecurity. There is a pressing need to develop syner-

getic efforts to improve the coverage, quality, and reuse of existing

studies. In this respect, we identified three main avenues for future

research to advance both cybersecurity and simulation.

i. Advance data collection and access

ii. Generate new theoretical constructs

iii. Improve behavioral models for simulation

Ouyang [137] notes one of the challenges of exploring the inter-

connection of critical infrastructure is the lack of precise data. The

same is true for cybersecurity in general. Data is generally sparse, in-

complete, or unavailable due to its sensitive nature. Similarly, there

have been efforts that encourage and illustrate the usefulness of

cybersecurity research datasets [138]. However, there is another

problem with the data—often, the right data is not collected.

Securing systems that affect the entire population requires cultural

data, economic data, and political data in addition to system and

threat information. Cybersecurity simulation models need data that

reflects the current social climate and norms. Prevention is most ef-

fective when we can understand and control the environment that

gives rise to an attack.

To this end, data collection needs to focus not just on the attack

but on the environment that gives rise to the attack. Data collection

methods for cybersecurity simulations should feed deep learning

[139] and other artificial intelligence (AI) techniques. These tools

provide a vibrant multilayered approach to representing vast

amounts of data, including social awareness data, which until now

might have seemed unrelated. AI and tools like Watson use cognitive

computing to harness the potential of the massive data that are

available [140]. They offer the possibility of finding connections in

data through simulations with greater context. Current work in this

area includes the emerging AI-based automated cybersecurity deci-

sion systems and their integration with simulations [70].

New data sources providing more information about the context

of attacks might lead to new theoretical constructs. Current theoret-

ical constructs in cybersecurity tend to be disparate and heavily de-

pendent on empiricism [141]. Foundational theories of network

science and cybersecurity center around attackers, defenders, net-

worked assets, and policies [142]. The defense technology continues

to advance at a rapid pace; defense against kernel rootkits [143] and

block chain-based data provenance [144] advance cybersecurity into

the cloud environments. However, attack strategies and maneuvers

around defenses move at an even faster pace infecting the system

with zombie bots and APTs. And vulnerabilities increase as the com-

plexity of the system expands. New theoretical constructs should in-

tegrate technology advances with theories of motivation, behavioral

analysis, and criminology to expand the science of cybersecurity to

cover the full spectrum of this human-made universe. Tisdale [28]

suggested a new construct based on the combination of Systems

Theory [145] and Complexity Leadership Theory [146]. These two

theories provide a strong foundation, but it is only a beginning.

Theories, like routine activity theory [147]—that stipulates that

crime requires three conditions: likely offender, a suitable target,

and absence of capable guardian—need to be updated to consider

the motivations of attackers in a world of unsuitable targets with the

presence of capable guardians. Simulation models provide a theory-

generation capability by modeling human behavior in cybersecurity

environments. The traditional “arms race” mentality focuses intern-

ally on improving the technical defense. A defense construct, and de-

fense models, should include an understanding of the adversary in a

manner that adjusts to behaviors and cultural norms observed in the

attacker.

A sociotechnical perspective forces us to rethink not only how

we conduct cybersecurity, but also how we implement that perspec-

tive when considering targets, threats, and preventive measures.

This becomes even more critical with the expansion of cyberphysical

systems (CPS). Hybrid simulation for cyberphysical systems [148]

describes the challenges associated with designing and testing CPS

but does not even address the massive security challenges that these

systems pose. As CPS becomes a larger part of everyday life, this

true marriage of social and technical systems must incorporate new

theoretical constructs and human behavior models into the simula-

tions [149].

Cybersecurity systems and behavioral models should range from

the actions of individual users through attackers and defenders and

into policymakers. Open problems such as attribution call for solu-

tions that combine data analysis and simulation. There is a need to

define the level of granularity concerning adversarial strategies vs.

tactics vs. intent, where state of the art is and challenges. It is im-

portant to highlight that a new perspective that considers the role of

people in cybersecurity is needed.

Models of humans and organizations are needed to provide an

exploratory ground for studying how social engineering campaigns,

for instance, can take place or what conditions may lead users to be-

come insider threats over the long term. Activities like risk analysis
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may be completely upended when measuring the role individuals

play in an organization. However, modeling human behavior in

cybersecurity presents several challenges, mainly due to the lack of

theories from psychology, criminology, or sociology that can pro-

vide a finer level of detail in the modeling of individuals. The effect-

iveness of simulations for cyber will be determined by several

factors, among which is the need for interdisciplinary work.

Simulation of cybersecurity, just like cybersecurity in general,

has focused primarily on the technical aspects. As we incorporate

users into the equation, we need to focus on the behavioral aspects.

Securing cyberspace is not simply a function of better technology; to

improve security, we need to understand the attacker, the user, the

defender, the organizational context to better model targets, threats,

and preventive measures. Psychologists and criminologists should be

key collaborators in developing solutions in the cybersecurity

domain.

Conclusions

The goal of this article is to provide an overview of cybersecurity, a

comprehensive review of significant simulation efforts for cyberse-

curity, and propose a way forward for advancing both simulation

and cybersecurity areas. It begins by inferring the dimensions of

cybersecurity—threats, targets, and preventative measures—to pro-

vide a foundational understanding of the cybersecurity landscape.

Targets refer to systems or networks of interests whose breach can

provide benefit to nonlegitimate users. Threats or attacks refer to

the negative outcomes of nonlegitimate access to cyber systems,

data, or people due to different types of attack conducted by differ-

ent vectors (attacker or attacking tool). Preventive measures refer to

all efforts that attempt to reduce the probability of attacks ever

occurring through technology, education, and policy.

The article reviews some of the important areas that simulation

is used in cybersecurity—representative environment building; test,

evaluation, and exploration; training and exercises; risk analysis and

assessment; and exploring the humans in cybersecurity.

Representative environment building refers to the creation of net-

works and connected systems consisting of physical or virtual

machines with simulation providing a flexible alternative. Test,

evaluation, and exploration in cybersecurity involve recognizing

when an attack is occurring, understanding the effects of different

attacks, and learning which responses are most effective against the

attack. Training and exercises, like in other areas where simulation

is used, provides a platform (less expensive and more flexible) for

acquiring specific skills. Risk analysis and assessment refer to the

use of simulations as the means to assess risk metrics to potentially

develop policies, approaches, or technology to minimize such risk.

Lastly, modeling humans in the context of cyber is a major line of re-

search that puts people as part of cyber defense and attack.

Attackers, CSA, and general system users interact to shape cyber-

space as it exists today, especially when considering organizational

context like costs associated with cyber disruption and loss of organ-

izational image.

Last, we discussed a proposed way forward by developing means

to establish data collection and access to inform models, to use exist-

ing social theories to create new theoretical constructs specific to the

cybersecurity domain, and considering behavioral models in cyber

as the means to develop sociotechnical solutions. The challenges of

cybersecurity are vast and growing. Securing cyberspace is an impos-

ing task that will take great technical ability combined with

behavioral insights. We argued that simulations should play a bigger

role, while more focused research is needed in this area.

Acknowledgments

The U.S. Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation thereon. The

views and conclusions contained herein are those of the authors and should

not be interpreted as necessarily representing the official policies or endorse-

ments, either expressed or implied, of the OASD(R&E) or the US

Government.

Funding

This material is based on research sponsored by the Office of the Assistant

Secretary of Defense for Research and Engineering [OASD(R&E)] under

agreement number FAB750-15-2-0120.

Conflict of interest statement. Authors declare no conflict of interest.

References

1. Radack S. Managing Information Security Risk: Organization, Mission

and Information System View, in ITL Bulletin. NIST Information

Technology Laboratory - Computer Security Resource Center, 2011.

2. Maughan D. The need for a national cybersecurity research and develop-

ment agenda. Communications of the ACM 2010;53:29.

3. Good VR. Identity Theft and the Internet. Utica College, 2019, p. 48.

4. Poyraz OI, Bouazzaoui S, Keskin O et al. Cyber-assets at risk (CAR): The

cost of personally identifiable information data breaches. In:

International Conference on Cyber Warfare and Security, 2020.

Norfolk, Virginia, USA: Academic Conferences International Limited.

5. Sheppard D. ID Theft down 28 Percent in U.S. in 2010: Survey. New

York: Reuters, 2011.

6. Marchini K, Pascual A. 2019 Identity Fraud Study: Fraudsters Seek New

Targets and Victims Bear the Brunt, in 2019 Identity Fraud Study.

Javelin, 2019, 45.

7. Poyraz OI, Canan M, McShane M et al. Cyber assets at risk: monetary

impact of US personally identifiable information mega data breaches.

The Geneva Papers on Risk and Insurance-Issues and Practice 2020;45:

616–38.

8. Lewis J. Economic Impact of Cybercrime – No Slowing Down, Santa

Clara, CA, USA: McAfee LLC, 2018.

9. Gorman S. Electricity grid in U.S. penetrated by spies. The Wall Street

Journal, 2009, 3–5.

10. Thakur K, Ali ML, Jiang N et al. Impact of cyber-attacks on critical in-

frastructure. In: 2016 IEEE 2nd International Conference on Big Data

Security on Cloud (BigDataSecurity), IEEE International Conference on

High Performance and Smart Computing (HPSC), and IEEE

International Conference on Intelligent Data and Security (IDS), 2016.

New York, NY, USA.

11. Ottis R. Analysis of the 2007 cyber attacks against estonia from the in-

formation warfare perspective. In: Proceedings of the 7th European

Conference on Information Warfare, 2008.

12. Von Solms R, Van Niekerk J. From information security to cyber secur-

ity. Comput Secur 2013; 38:97–102.

13. Office UC. National Cyber Security Strategy 2016-2021. UK Cabinet

Office, 2016.

14. DoD, DoD Modeling and Simulation Glossary, Department of Defense.

Under Secretary of Defense for Acquisition Technology, 1998.

15. Leeuwen BV, Urias V, Stout W, et al. Emulytics at Sandia National

Laboratories. In: MODSIM World, 2015. Virginia Beach, VA, USA.

16. Guruprasad S, Ricci R, Lepreau J. Integrated network experimentation

using simulation and emulation. In: Proceddings - First International

Conference on Testbeds and Research Infrastructures for the

Development of Networks and Communities, Tridentcom 2005, 2005,

204–12.

10 Journal of Cybersecurity, 2021, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/7/1/tyab005/6170701 by guest on 24 N

ovem
ber 2024



17. Rimondini M. Emulation of computer networks with Netkit. 2007,

Roma, Italy: Universit�a di Roma Tre.

18. Pizzonia M, Rimondini M. Netkit: network emulation for education.

Software: Practice and Experience 2016;46:133–165. 10.1002/spe.2273

19. Turnitsa C, Padilla, JJ Tolk A. Ontology for modeling and simulation.

Proceedings - Winter Simulation Conference, 2010: p. 643–651.

20. Aburas MM, Ho YM, Ramli MF et al. The simulation and prediction of

spatio-temporal urban growth trends using cellular automata models: a

review. Int J Appl Earth Obs Geoinf 2016;52:380–9.

21. Kiesling E, Günther M, Stummer C et al. Agent-based simulation of in-

novation diffusion: a review. Cent Eur J Oper Res 2012;20:183–230.

22. Stanica R, Chaput E, Beylot A-L. Simulation of vehicular ad-hoc net-

works: challenges, review of tools and recommendations. Comput Netw

2011;55:3179–88.

23. Dictionary CE. In Collins English Dictionary. HarperCollins Publishers,

2020.

24. Studies, N.I.f.C.C.a. A Glossary of Common Cybersecurity

Terminology, 2020 November 28, 2018. https://niccs.us-cert.gov/about-

niccs/glossary (20 March 2020, date last accessed).

25. ITU. Overview of cybersecurity, in Series X: Data Networks, Open

System Communications and Security. International Telecommunication

Union, 2008.

26. CNNS. Committee on National Security Systems (CNNS) Glossary. Ft

Meade, MD, USA: CNNS, 2015.

27. Cebula JJ, Popeck ME, Young LR. A Taxonomy of Operational Cyber

Security Risks Version 2. 2014. Software Engineering Institute.

28. Tisdale SM. Cybersecurity: challenges from a systems, complexity,

knowledge management and business intelligence perspective. Issues

Infor Syst 2015;16:191–8.

29. Hutchins EM, Cloppert MJ, Amin RM. Intelligence-driven computer

network defense informed by analysis of adversary campaigns and intru-

sion kill chains. Leading Iss Inform Warf Secur Res 2011;1:80.

30. Caltagirone S, Pendergast A, Betz C. The Diamond Model of Intrusion

Analysis. Center for Cyber Intelligence Analysis and Threat Research

Hanover Md: Ft. Meade, MD, USA, 2013.

31. Herr T. A framework for malware & cyber weapons PrEP. J Inform

Warf 2014;13:87–106.

32. Japertas S, Baksys T. Method of early staged cyber attacks detection in

IT and telecommunication networks. E. ir Elekt, 2018;24:68–77.

33. Agarwal T, Henry D, Finkle J. JPMorgan Hack Exposed Data of 83

Million, among Biggest Breaches in History, in Reuters. Thomson

Reuters, 2014.

34. Shakarian P. The 2008 Russian cyber campaign against Georgia.

Military Rev 2011;91:63.

35. ITRC. Identity Theft Resource Center, 2020. https://www.idtheftcenter.

org/ (27 March 2020, date last accessed).

36. IBM. IBM 2015 Cyber Security Intelligence Index, 2015, IBM.

37. Menn J. User Mistakes Aid Most Cyber Attacks, Verizon and Symantec

Studies Show, in Reuters. Thomson Reuters, 2015.

38. Krombholz K, Hobel H, Huber M et al. Advanced social engineering

attacks. J Inform Secur Appl 2015;22:113–22.

39. Laszka A, Vorobeychik Y, Koutsoukos X. Optimal personalized filtering

against spear-phishing attacks. In: Twenty-Ninth AAAI Conference on

Artificial Intelligence, 2015. Austin, TX, USA: AAAI Press.

40. Kissel R. Glossary of Key Information Security Terms. National Institute

of Standards and Technology, 2013.

41. Kucuk Y, Patil N, Shu Z et al. BigBing: privacy-preserving cloud-based

malware classification service. In: 2018 IEEE Symposium on Privacy-

Aware Computing (PAC), 2018. Washington DC, USA: IEEE.

42. Balbi A. Massive cyber attack at anthem. Strat Financ 2015;96:11.

43. Snyder P, Kanich C. One thing leads to another: credential based privil-

ege escalation. In: Proceedings of the 5th ACM Conference on Data and

Application Security and Privacy. San Antonio, TX: Association for

Computing Machinery, 2015, 135–7.

44. Gillman D, Lin Y, Maggs B et al. Protecting websites from attack with se-

cure delivery networks. Computer 2015;48:26–34.

45. Sang-Hun C. Computer networks in South Korea are paralyzed in cyber-

attacks. The New York Times, 2013.

46. Langner R. Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur Priv

2011;9:49–51.

47. Szor P. The Art of Computer Virus Research and Defense. Upple Sadle

River, NJ, USA: Addison-Wesley Professional, 2005.

48. Singh R, Kumar H, Singla RK et al. Internet attacks and intrusion detec-

tion system: a review of the literature. Online Inform Rev 2017;41:

171–84.

49. Dierks T, Rescorla E. The Transport Layer Security (TLS) Protocol

Version 1.2, in RFC 5246, 2008, The IETF Trust.

50. Barrett DJ, Silverman RE, Byrnes RG. SSH, the Secure Shell: The

Definitive Guide: The Definitive Guide. O’Reilly Media, 2005.

51. Paradise A, Shabtai A, Puzis R et al. Creation and management of social

network honeypots for detecting targeted cyber attacks. IEEE Trans

Comput Soc Syst 2017;4:65–79.

52. Kavak H, Padilla JJ, Vernon-Bido et al. A Characterization of

Cybersecurity Simulation Scenarios. Pasadena, CA: ACM, 2016.

53. Calheiros RN, Netto MAS, Buyya R. EMUSIM: an Integrated Emulation

and Simulation Environment for Modeling, Evaluation, and Validation

of Performance of Cloud Computing Applications. Softw Pract Exp

2012;39:1–18.

54. Damodaran SK, Couretas JM. Cyber modeling & simulation for cyber-

range events. In: Summer Computer Simulation Conference. Chicago,

IL: Society for Modeling & Simulation International (SCS), 2015.

55. Keshav S. REAL: A Network Simulator. University of California

Berkeley, USA. 1988.

56. Varga A, Hornig R. An overview of the OMNeTþþ simulation environ-

ment. In: Proceedings of the 1st international conference on Simulation

tools and techniques for communications, networks and systems & work-

shops. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering): Marseille, France. p. Article 60, 2008.

57. INET. INET Framework - INET Framework, 2020. https://inet.

omnetpp.org/ (19 April 2020, date last accessed).

58. Henderson TR, Lacage M, Riley GF et al. Network simulations with the

ns-3 simulator. SIGCOMM Demonst 2008;14:527.

59. Issariyakul T, Hossain E. Introduction to Network Simulator 2 (NS2), in

Introduction to network simulator NS2. New York, NY, USA: Springer,

2009, p, 19–36.

60. Yoon S, Kim YB. A design of network simulation environment using

ssfnet. in 2009 First International Conference on Advances in System

Simulation. 2009. IEEE.

61. Riley GF. The Georgia tech network simulator. In: Proceedings of the

ACM SIGCOMM workshop on Models, methods and tools for reprodu-

cible network research, 2003.

62. Barr R. Swans-Scalable Wireless Ad Hoc Network Simulator. User

Guide, 2004.

63. Sarkar NI, Halim SA. A review of simulation of telecommunication net-

works: simulators, classification, comparison, methodologies, and rec-

ommendations. Cyber J 2011;2:10–17.

64. Ojie E, Pereira E. Simulation tools in internet of things: a review. In:

Proceedings of the 1st International Conference on Internet of Things

and Machine Learning, 2017. Liverpool, UK: ACM.

65. Varshney M, Pickett K, Bagrodia R. A Live-Virtual-Constructive (LVC)

framework for cyber operations test, evaluation and training. In:

Proceedings - IEEE Military Communications Conference MILCOM,

2011, 1387–92.

66. Bergin DL. Cyber-attack and defense simulation framework. J Defens

Model Simul 2015;12:383–92.

67. Zhou, M. and S.-d. Lang, A Frequency-based approach to intrusion de-

tection. Systemics, Cybernetics, and Informatics, 2003. 2(3): p. 52–56.

68. Hancock DL, Lamont GB. Multi agent system for network attack classi-

fication using flow-based intrusion detection. In: 2011 IEEE Congress of

Evolutionary Computation, CEC 2011, 2011, 1535–42.

69. Puzis R, Tubi M, Elovici Y et al. A decision support system for placement

of intrusion detection and prevention devices in large-scale networks.

ACM Trans Model Comput Simul 2011;22:1–26.

70. Wagner N, Sahin CS, Winterrose M et al. Towards automated cyber de-

cision support: A case study on network segmentation for security. In:

Journal of Cybersecurity, 2021, Vol. 00, No. 0 11

D
ow

nloaded from
 https://academ

ic.oup.com
/cybersecurity/article/7/1/tyab005/6170701 by guest on 24 N

ovem
ber 2024

https://niccs.us-cert.gov/about-niccs/glossary
https://niccs.us-cert.gov/about-niccs/glossary
https://www.idtheftcenter.org/
https://www.idtheftcenter.org/
https://inet.omnetpp.org/


2016 IEEE Symposium Series on Computational Intelligence (SSCI),

2016.
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