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Abstract—Statistical debuggers use data collected during test
case execution to automatically identify the location of faults
within software. Recent work has applied causal inference
to eliminate or reduce control and data flow dependence
confounding bias in statement-level statistical debuggers. The
result is improved effectiveness. This is encouraging but mo-
tivates two novel questions: (1) how can causal inference
be applied in predicate-level statistical debuggers and (2)
what other biases can be eliminated or reduced. Here we
address both questions by providing a model that eliminates or
reduces control flow dependence and failure flow confounding
bias within predicate-level statistical debuggers. We present
empirical results demonstrating that our model significantly
improves the effectiveness of a variety of predicate-level statis-
tical debuggers, including those that eliminate or reduce only
a single source of confounding bias.
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I. INTRODUCTION

Recently, there has been considerable research on using

statistical approaches for fault localization [1]–[14]. These

approaches, referred to as statistical debuggers, require test

inputs, corresponding execution profiles, and a labeling of

the test executions as either succeeding or failing. The

execution profiles reflect coverage of individual statements,

the truth-values of branches or other inserted predicates

(conditional propositions).

In the canonical predicate-level statistical debugger Co-

operative Bug Isolation (CBI), three predicates are inserted

and tested for each assignment statement to, or return of, a

variable k: (k > 0), (k = 0) and (k < 0) [1], [2]. Within

the predicate-level statistical debugger Exploratory Software

Predictor (ESP), these three predicates are complemented

with elastic predicates. Elastic predicates use profiling to

compute the mean (µk), and standard deviation (�k), of the

values assigned to, or returned from a variable k. Using these

profiled statistics, the CBI predicates are complemented with

elastic predicates such as: (k = µk), (k > µk + �k) and

(k < µk + �k) [14].

Once formed, the predicates in ESP and CBI are scored

for suspiciousness. Then developers examine the predicates

in decreasing order of suspiciousness until the fault is dis-

covered. One metric used to score predicate suspiciousness is

the probability of a program Q failing given that a predicate

p is true. This probability, Pr(Q fails | p = true), indicates

if the condition specified by predicate p was true during an

execution of Q.

Given the execution of a test suite, Pr(Q fails | p = true)

is typically estimated by the specificity metric,
fp

(fp+sp)
,

where fp is the number of tests for which p is true and

the program fails and where sp is the number of tests

for which p is true and the program succeeds. Approaches

that estimate the probability Pr(Q fails | p = true) use

statistical techniques on observational data to determine the

effect of individual predicates on program failures. However,

the suspiciousness metrics used in these approaches can be

susceptible to biases.

Recently Baah et. al. showed that control flow dependence

confounding bias exists within statement-level suspicious-

ness metrics [10], [11]. Confounding bias occurs when an

apparent causal effect of an event on an outcome may

actually be due to an unknown confounding variable, which

causes both the event and the outcome [15], [16]. Baah et al.

showed that coverage of the immediately preceding depen-

dent statement in the control flow, the forward control flow

predecessor, can cause dependent statements to contribute to

a program’s failure and that existing metrics do not account

for this control flow confounding bias.

By accounting for control flow confounding bias bias at

the statement-level, Baah et al. improved the effectiveness

for a variety of established statement-level statistical de-

bugging suspiciousness metrics. More recently, Baah et al.

improved their statement-level approach by also controlling

for confounding bias caused by data flow dependences

between statements [11].

Here we look to adapt Baah et al.’s work for predicate-

level statistical debuggers. The adaptation has challenges

requiring innovation. One of the contributions of our work is

a robust method to efficiently track the forward control flow

predecessor predicate and employ it in a causal inference

model that eliminates control flow confounding bias in

different predicate-level statistical debugging metrics.

Within predicate-level statistical debugging approaches

the issue of bias has been previously explored. Liblit et al.

showed that the estimate
fp

(fp+sp)
of Pr(Q fails | p = true)

is biased [1], [2]. The estimate is biased because once the

fault in a program has been triggered, the probability of the

program failing is 1.0, thus the observations collected from
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subsequent predicates are more susceptible to failure. This

reflects failure flow confounding bias.

Liblit et al. proposed the suspiciousness metric, Impor-

tance, as a correction for failure flow confounding bias.

Importance measures the suspiciousness of a predicate p,

not by the chance that it implies failure, but by how much

difference it makes that the predicate p is observed to be

true versus simply reaching the line where the predicate p
is evaluated [1]. Within Importance, Pr(Q fails | p = true)

is estimated by the difference:
fp

(fp+sp)
-

fp obs

(fp obs+sp obs)
.

Here, fp obs and sp obs are the number of respective

failing and succeeding test runs for which p is reached and

evaluated (true or false). This correction attempts to factor

out predicates that are more susceptible to failure because

of the program flow once the fault is triggered. While this

heuristic can be effective it is not a proven solution.

The second contribution of our work is a causal inference

model which accounts for failure flow confounding bias at

the predicate-level. The combination of our two contribu-

tions yields a predicate-level statistical debugging metric that

is significantly more effective than existing metrics because

the control flow and failure flow confounding biases are

reduced and/or eliminated.

These contributions are needed. While control flow and

data flow dependence biases are evident at the statement-

level and the predicate-level, failure flow is only distinguish-

able at the predicate-level [1], [2]. We present an empirical

evaluation showing that our model significantly improves

the effectiveness of a variety of predicate-level statistical

debugging metrics in two different predicate-level statistical

debuggers.

II. MOTIVATING EXAMPLE

An example helps elucidate how confounding bias oc-

curs in predicate-level suspiciousness metrics. Consider the

procedure distance() in Figure 1, which has a fault in

Statement 5. The procedure should print the one dimensional

Euclidean distance between two points x and y. However,

for some test cases distance() returns a negative num-

ber. The observational data collected for the truth of the

predicates for statements 5, 6, 7 and 8 is shown in Table I.

The first two columns in Table I identify the statement

number and condition tested in each of the predicates. The

third through the seventh columns identify the inputs for five

test cases. The ’1/0’ entires within these columns indicate if

the corresponding predicate was true in each test case. An

entry of ’1’ means that the predicate was true and an entry

of ’0’ means that the predicate was not true. The bottom row

of Table I shows the Boolean outcome of executing each test

case. A failing test case execution is denoted by ’F’ and a

successful (or passing) test case execution is denoted by ’S’.

The two rightmost columns (SR and CR) in Table I

indicate the rank of each predicate based on two different
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int

distance(int x, int y)

{    

     int diff = x - y;

     if (!( diff > 1)){ /* off by one */

         int dist = 0;

         dist = y - x;

         print(dist);

     }

     int dist = 0;

     dist = x - y;

     return dist;

} 

Figure 1. Faulty function that calculates euclidean distance between two
one-dimensional points.

Table I
TEST CASES AND PREDICATE DATA FOR FIGURE 1.

LoC Predicate 2,2 5,4 5,1 -4,-2 1,0 SR CR

5 diff = 0 1 0 0 0 0 12 12
5 diff > 0 0 1 0 0 1 3 1
5 diff < 0 0 0 1 1 0 12 12
6 dist = 0 1 1 1 1 1 4 12
6 dist > 0 0 0 0 0 0 12 12
6 dist < 0 0 0 0 0 0 12 12
7 dist = 0 1 0 0 0 0 12 12
7 dist > 0 0 0 1 1 0 12 12
7 dist < 0 0 1 0 0 1 3 2
8 dist = 0 1 0 0 0 0 12 12
8 dist > 0 0 0 1 1 0 12 12
8 dist < 0 0 1 0 0 1 3 2

S/F ——– S F S S F – –

suspiciousness metrics. The first metric is the specificity met-

ric described in the Introduction. The second metric, found

in the rightmost column of Table I, is derived from a causal

model which controls for the effects of other predicates on

the suspiciousness of the predicate being estimated and on

the occurrence of program failure.

Table I shows that the specificity metric identifies three

predicates which rank as the most suspicious predicates in

the procedure distance() shown in Figure 1. These pred-

icates are: (diff >0)5, (dist <0)7 and (dist <0)8.

A predicate x specifying a condition corresponding to pro-

gram Statement y is abbreviated as xy . The first predicate,

(diff > 0)5, reflects the location of the fault in the

procedure distance(). However, the two other predicates

have the same suspiciousness rank as (diff > 0)5 and

correspond to innocent statements. These two predicates

have the same rank as the fault localizing predicate, despite

their ties to innocent statements, because their truth is

dependent on the condition diff > 0 in Statement 5.

This dependence causes the predicates (dist < 0)7 and

(dist < 0)8 to be true in every failing execution. Since

the specificity metric does not control for dependence among
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predicates, confounding bias exists and the two dependent

predicates (dist < 0)7 and (dist < 0)8 receive the

same rank as the fault localizing predicate (diff > 0)5.

This dependency related confounding bias is referred to as

control flow confounding bias.

However, another type of confounding bias exists in the

specificity metric used to rank the predicates in the procedure

distance(). Additional confounding bias exists because

the fault in Statement 5 is triggered before the predicates

corresponding to statements 6, 7 and 8 are evaluated. This

bias is evident in the specificity suspiciousness rank (4) cal-

culated for the predicate (dist =0)6, which corresponds

to the innocent declaration of the variable dist.

While the condition dist = 0 in Statement 6 is uncor-

related with failure, it is always true immediately following

the execution of Statement 5 and thus is true in every failing

test case. As a result the specificity metric finds the predicate

(dist = 0)6 to be suspicious. However, it is important

to note that the chance of a test case failing given that

(dist = 0)6 is true, is the same as the chance of a test

case failing given that Statement 6 is executed. The inability

to control for the difference between the chance of a test case

failing given that a predicate is true and the chance of a test

case failing given that the predicate is evaluated (true or

false) results in a second type of confounding bias: failure

flow confounding bias.

The factors that create control flow and failure flow

confounding bias can be controlled for in a causal model.

The causal model produces a suspiciousness metric with

reduced bias that more effectively ranks predicates for fault

localization. In this example, the causal model predicate

rankings clearly identify one suspicious predicate that lo-

calizes the fault in the procedure distance() in Figure

1. This is shown in the right-hand column of Table I. In

Section III the factors that create control flow and failure

flow confounding bias are identified and causal models

which produce suspiciousness metrics with reduced bias are

presented.

III. CONTROLLING FOR CONFOUNDING BIAS

Within the motivating example in Section II, two different

types of confounding bias are evident: control flow and

failure flow. While controlling for both of these confounding

biases through a causal model to estimate suspiciousness for

predicate-level statistical debuggers is our novel work, each

of the biases has been previously explored, separately, in

other research.

At the statement-level, Baah et al. have shown that in a

subject program control flow confounding bias is manifested

on a given statement stmt through the execution of the

statement immediately preceding stmt in the control flow

graph. This statement is the forward control flow predecessor

of stmt. By employing a causal model to control for the

forward control flow predecessor, Baah et al. improved the

effectiveness of suspiciousness metrics for statement-level

statistical debuggers [10], [11]. In Section III-C we adapt

Baah et al.’s statement-level work on reducing control flow

confounding bias to the predicate-level.

While control flow confounding bias had not been per-

viously explored at the predicate-level, failure flow con-

founding bias has. Liblit et al. have shown that failure

flow confounding bias exists in the specificity metric and

proposed the Importance measure to address it. Recall, the

Importance measure estimates Pr(Q fails | p=true) with the

difference fp/(fp + sp)− fp obs/(fp obs + sp obs). The terms

fp obs and sp obs are the number of respective failing and

succeeding test cases for which p is evaluated. Liblit et al.’s

estimate of Pr(Q fails | p=true) measures not the chance

that a predicate p implies failure, but how much difference

it makes that the predicate p is observed to be true versus

simply reaching the line where the predicate p is evaluated

[1], [2]. This correction is a heuristic to factor out the

program flow once the fault is triggered within a subject

program. While Liblit et al.’s heuristic can be effective it

does not employ a methodology, such as causal inference,

that is a proven solution for addressing confounding bias.

In Section III-D, our causal model which reduces con-

trol flow and failure flow confounding bias is presented.

The evaluation in Section IV shows that employing this

causal model to control for both confounding biases re-

sults in significantly more effective suspiciousness metrics

for predicate-level statistical debuggers than any existing

suspiciousness metrics, including Liblit et al.’s Importance

estimate.

However, before any of our models for reducing con-

founding bias are presented, Section III-A and Section III-B

review background information related to suspiciousness

metrics, observational studies, confounding bias and causal

inference which is required to understand our approach.

A. Existing Suspiciousness Metrics

The extent to which a predicate p reflects subject program

failure is measured through a suspiciousness metric. The

following terms are used in existing predicate-level metrics

to estimate suspiciousness: s is the total number of tests that

succeed (pass), f is the total number of tests that fail, sp
is the number of tests that succeed where p is true and fp
is the number of tests that fail where p is true. Different

suspiciousness metrics use these terms differently. Here,

several established suspiciousness metrics are reviewed.

1) Tarantula: The Tarantula suspiciousness metric,

shown in Eq. 1, is closely related to the specificity metric,

Tarantula =

fp
f

fp
f
+

sp
s

. (1)

Tarantula differs from specificity because it includes the

number of failed test cases, f , in the numerator and denom-

inator and it includes the number of successful test cases, s,
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in the denominator. However, when s = f as shown in Eq.

2, Tarantula reduces to the specificity metric [6],

Tarantula =

fp
f

fp
f
+

sp
s

=

fp
f

fp
f
+

sp
f

=
fp

fp + sp
. (2)

2) F1: F1 balances an estimate of Pr(Q fails | p=true)

with an estimate of the probability that predicate p is true

given that the subject program Q failed, Pr(p = true | Q
fails). The sensitivity metric,

fp
f

, is used in the F1 measure

to estimate Pr(p = true | Q fails) [7].

The inclusion of sensitivity within a suspiciousness metric

addresses issues that occur when a predicate p is true in very

few failing test cases. Without sensitivity, if there are many

successful (passing) test cases where p is true, the overall

sample of test cases where p is true will be unbalanced and

the specificity will be low even if there are very few failed

test cases. Conversely, if there are few successful (passing)

test cases where p is true, the overall sample of test cases

where p is true will be small and the specificity could be high

even if there are many failed test cases where predicate p is

not true [7],

F1 =
2

1
fp

f

+ 1
fp

fp+sp

. (3)

3) Importance: Liblit’s Importance measure is closely

related to the F1 metric [1], [2]. However, the specificity

metric used in the F1 metric is replaced with the difference:

fp/(fp + sp) − fp obs/(fp obs + sp obs). This difference is

referred to as the Increase. The first term in Increase is

identical to the specificity metric. However, the second term

in Increase is meant to ensure that predicate p is scored,

not by the chance that p implies failure, but by how much

difference it makes that p is true versus simply reaching the

statement where p is evaluated (true or false). Formally, the

Importance measure, shown in Eq. 4, is

Importance =
2

1
fp

f

+ 1
Increase

. (4)

4) Ochiai: Other statistics besides the harmonic mean

can be employed to balance the metrics specificity and

sensitivity. The Ochiai metric, shown in Eq. 5, balances

specificity and sensitivity with the geometric mean [7],

Ochiai =

s

fp
f

×

fp
fp + sp

. (5)

B. Observational Studies and Confounding Bias

Reducing or eliminating confounding bias within obser-

vational studies is a well studied research topic. In this

section, we view predicate-level statistical debugging as

an observational study and a novel approach to reduce

confounding bias is summarized.

Casting predicate-level statistical debugging as an obser-

vational study yields two groups of test case executions.

These two execution groups are: those where predicate p
is true (the treatment group) and those where predicate p
is not true (the control group) [15]. For a predicate p, the

membership of a test case in either the treatment or the

control group is denoted by the treatment variable Tp. For

those test cases where predicate p is true, Tp = 1. For those

test cases where predicate p is not true, Tp = 0. Independent

of the presence of a given predicate, test case executions can

also be classified with an outcome variable Y . A successful

test case execution is denoted by Y =0 and a failing test case

execution is denoted by Y =1.

In the context of an observational study, estimating the

average treatment effect of a predicate on a test case cor-

responds to estimating the probability of program Q failing

given that a specific predicate p is true, Pr(Q fails | p=true).

The average treatment effect of a predicate, 'p, is estimated

by a regression model. The most basic estimate for the

average treatment effect of a predicate is computed using

the regression model in Eq. 6. The model is linear and is

solved with least-squares regression, µp is an intercept and

�p is a random error term that is uncorrelated with Tp [17].

The estimate of Pr(Q fails | p=true) yields the same ranks

as the specificity metric.

1) For each predicate p in a faulty subject program Q fit

a separate model Mp according to the following:

a) The outcome variable Y is 1 for a test case if it

fails and is 0 otherwise.

b) The treatment indicator Tp is 1 for a test case if

p is true and is 0 otherwise.

2) Rank the predicates in descending order of, 'ls,p. 'ls,p
is the least-squares estimate, for each predicate, of the

coefficient of the treatment variable Tp in the model

Mp.

Y = µp + 'pTp + /p (6)

The model shown in Eq. 6 shows the symmetry be-

tween the specificity metric and the estimate of the average

treatment effect of a predicate on subject program test

case outcomes. However, the model in Eq. 6 ignores any

dependencies between the treatment variable Tp and the

outcome variable Y . This relationship reflects treatment

selection. Ignoring treatment selection is equivalent to as-

suming the treatment variable Tp and the outcome variable

Y are independent. The metrics in Section III-A make this

assumption. As a result, they suffer from confounding bias.

It is often possible to characterize the process of treatment

selection in terms of one or more important variables. If

a set of covariates accounts well for which units in an

observational study receive treatment and which do not,

then it is possible to reduce or eliminate confounding bias

when estimating the average treatment effect. In the context

of statistical debugging, if a set X of covariates accounts

well for those test cases where a given predicate p is true
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(T=1) and those test cases where p is not true (T=0), then

it is possible to reduce or eliminate confounding bias in the

suspiciousness estimate for a predicate. This is accomplished

by controlling for (or conditioning on) X in a model that

estimates the average treatment effect of a predicate [15].

In the next sections models which employ this approach to

control for different covariates are presented.

C. Control Flow Dependency Confounding Bias

Our predicate-level adaptation of Baah et al.’s statement-

level work for controlling for control flow confounding bias

begins with defining and identifying the forward control flow

predecessor statement for a given predicate. This requires a

review of control flow graphs and statement dependency.

A program’s control flow graph is a directed graph

whose nodes correspond to program statements and whose

edges represent control dependences between statements

[18]. Node Y is control dependent on node X if X has

two outgoing edges and the traversal of one edge always

leads to the execution of Y while the traversal of the other

edge does not necessarily execute Y . Node X dominates

node Y in a control flow graph if every path from the

entry node to Y contains X . Node Y is forward control

dependent on node X if Y is control dependent on X and Y
does not dominate X [18]. Forward control dependences are

control dependences that can be realized during execution

without necessarily executing the dependent node more than

once. Node X is a forward control flow predecessor of

Node Y if Y is forward control dependent on X and X
immediately precedes Y in the control flow graph. The

statement corresponding to node X is the forward control

flow predecessor statement of the statement corresponding

to node Y that is defined by Baah et al. [1], [2].

We identify the forward control flow predecessor predi-

cate using an approach that is similar to Baah et al.’s algor-

tihm to find the forward control flow predecessor statement.

For a given predicate p, corresponding to statement stmt,
both approaches extract the control-dependence graph of a

subject program and identify the control flow statement in

the graph immediately preceding stmt. This is the forward

control flow predecessor for stmt.

However, identifying the forward control flow predecessor

for p requires an additional step. Recall, a statement reflects

a line of source code while predicates represent conditions

that are true about variables within the line of source code.

Thus, given a forward control flow statement, the forward

control flow predecessor predicate is located by instrument-

ing the forward control flow predecessor statement with two

branch predicates. The first of the two predicates asserts that

the branch is false. The second of the two predicates asserts

that the branch is true. When the branch is reached, exactly

one of the two predicates will be true. The predicate that is

true is the forward control flow predecessor predicate.

This approach is applicable to all two-way branches in

subject programs. Two-way branching statements include:

if statements, branches governing for and while loops,

branches implied by the logical ’&&’ and 0||
0

operators

and implicit branches. However, multiple-way switch

statements are rarely two-way branches. As a result, each

branch of a switch statement is instrumented with a

predicate which asserts that the branch is true. When the

switch statement is reached exactly one of the branches

and one of the predicates will be true. The predicate that

is true is the forward control flow predecessor predicate.

Branch predicate instrumentation is not a contribution of our

work, however, innovatively employing branch predicates to

capture forward control flow predecessor predicates is our

contribution.

The ability to capture the forward control flow predecessor

predicate for a given predicate enables our model which

controls for control flow dependency confounding bias to

be defined. Given an instrumented subject program, and

the feedback reports from executing a set of test cases

with a predicate-level statistical debugger such as CBI or

ESP, the following model reduces or eliminates control flow

confounding bias:

1) For each predicate p in a faulty model Q fit a separate

linear model Mp according to the following:

a) The outcome variable Y is 1 for a test case if it

fails and is 0 otherwise.

b) The treatment variable Tp is 1 for a test if p is

true and is 0 otherwise.

c) If p has a forward control flow predecessor

predicate, cfp(p), then Mp has a single binary

covariate Cp, which is 1 for a test case if cfp(p)
is true and is 0 otherwise. If p does not have a

forward control flow predecessor predicate then

Mp has no covariates.

2) Rank the predicates in descending order of, ' cls,p,

the least-squares estimate, for each predicate, of the

coefficient of Tp in Mp.

The resulting linear model for a predicate p is:

Y = µc
p + ' cp Tp + �c

p Cp + /cp (7)

The coefficient ' cls,p is the average treatment effect of

predicate p on subject test case outcomes. This estimate is

a reduced bias version of the specificity metric.

The role of covariate Cp is to control for confounding bias

of the suspiciousness estimate for predicate p, due to the

truth of other subject program predicates. Intuitively, con-

ditioning on Cp reduces confounding bias because cfp(p)
is the most immediate cause of p being evaluated or p not

being evaluated in a particular test case.

Pearls Back-Door Criterion for causal graphs provides a

formal, causal inference justification for the model in Eq. 7

[16]. For any subject program where failure is determined
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with a single output statement and control dependences

carry all the causal influences of failure, any back door

paths from a predicate to the output statement must begin

with the forward control flow predecessor predicate, cfp(p).
Thus, cfp(p) is a suitable covariate of Tp because it satisfies

Pearl’s Back-Door Criterion. It blocks all back-door paths

in the dynamic control flow graph from the predicate cor-

responding to the treatment variable Tp to output statement

corresponding to the outcome variable Y . As a result the

control flow dependency confounding bias in, ' cls,p, the

model’s estimate of the average treatment effect, is reduced.

D. Failure Flow Confounding Bias

Recall, Liblit et al.’s Importance measure employs the

difference fp/(fp+sp)−fp obs/(fp obs+sp obs) as a heuristic

to reduce failure flow confounding bias. The term mea-

sures, not the chance that a predicate p implies failure,

but how much difference it makes that the predicate p is

observed to be true versus simply reaching the line where

the predicate p is evaluated [1]. While this can be an

effective means of reducing failure flow confounding bias,

it is a heuristic, not a proven solution. Formally reducing or

eliminating failure flow confounding bias requires a causal

model where the set of covariates within the model satisfy

the causal inference Back-Door Criterion. The difference,

fp/(fp + sp)− fp obs/(fp obs + sp obs), does not meet these

requirements. In this subsection, our model, which controls

for predicate evaluation (true or false), satisfies Pearl’s Back-

Door Criterion and reduces failure flow confounding bias is

presented.

Given the outcomes and predicate coverage vectors from

executing a set of test cases with a predicate-level statistical

debugger such as CBI or ESP the following approach

reduces or eliminates both control flow and failure flow

confounding biases:

1) For each predicate p in a faulty model Q fit a separate

linear model Mp according to the following:

a) The outcome variable Y is 1 for a test case if it

fails and is 0 otherwise.

b) The treatment variable Tp is 1 for a test if p is

true and is 0 otherwise.

c) If p has a forward control flow predecessor

predicate, cfp(p), then Mp has a single binary

covariate Cp, which is 1 for a test case if cfp(p)
is true and is 0 otherwise. If p does not have a

forward control flow predecessor predicate then

Mp does not have this covariate.

d) The covariate Dp is 1 for a test case if p is

evaluated (true or false) and is 0 otherwise.

2) Rank predicates in descending order of, '
c,f
ls,p, the least-

squares estimate, for each predicate, of the coefficient

of Tp in Mp.

The resulting linear model for a predicate p is:

Y = µp + ' c,fp Tp + �c,f
p Cp + !c,f

p Dp + /p (8)

Here, the coefficient '
c,f
ls,p is the least-squares estimate of

the average treatment effect of a predicate p on the subject

program test case outcomes. The notable difference between

Eq. 8 and the causal model shown in Eq. 7 is the inclusion

of the covarite Dp, which reflects whether or not predicate

p is evaluated. Intuitively, Dp further reduces confounding

bias because it enables the model to determine how much

difference it makes that the predicate p is observed to be

true versus simply reaching the line where the predicate p
is evaluated.

Once again, inclusion of the covariate Cp blocks all back-

door paths from the predicate corresponding to the treatment

variable Tp to the output statement corresponding to the

outcome variable Y . This enables the additional source of

bias controlled for by Dp to be reduced without introducing

other sources of bias into '
c,f
ls,p. This is significant. Without

the inclusion of covariate Cp in the model to block all back-

door paths, Dp would not be a suitable covariate.

E. Improving Existing Suspiciousness Estimates

The reduced bias metrics derived in sections III-C and

III-D can be integrated into the suspiciousness metrics

presented in Section III-A. Recall, that Tarantula and the

reduced bias metrics ' cls,p and '
c,f
ls,p are similar to specificity.

Thus, integrating either ' cls,p and '
c,f
ls,p into the Tarantula

metric is a straightforward substitution.

It is slightly more difficult to integrate ' cls,p and '
c,f
ls,p

into the Ochiai, F1 and Importance metrics because these

measures also employ sensitivity. As a result, both ' cls,p and

'
c,f
ls,p must be converted into a probability value before either

can replace the specificity measure in the Ochiai, F1 or

Importance metrics. The inverse logit function, exp(x)/(1+
exp(x)), is used to convert ' cls,p and '

c,f
ls,p into a probability

value. The function constrains the value of the reduced bias

estimates to the range 0.0 - 1.0 and ensures the combination

with the sensitivity measure is meaningful.

Once converted ' cls,p and '
c,f
ls,p can be substituted into the

Ochiai, F1 and Importance metrics in place of the biased

specificity estimate. Performing this substitution in the F1

metric and the Importance measure renders the two metrics

indistinguishable because the only term in which they differ

is replaced with ' cls,p or '
c,f
ls,p.

IV. EVAULATION

A. Experimental Setup

The utility of a statistical debugging approach is deter-

mined through empirical evaluation using established bench-

marks. Characteristics of the benchmarks included in our

evaluation are listed in Table II. Each was obtained from

[19], except bc, which was obtained from [20].
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Table II
EVALUATION BENCHMARKS

Name LoC Vers. Tests Description

tcas 138 41 1608 altitude seperation

totinfo 396 23 1052 information measure

schedule 299 9 2650 priority queue

schedule2 297 9 2710 priority queue

print-tokens 472 5 4130 lexical analyzer

print-tokens2 399 10 4115 lexical analyzer

replace 512 31 5542 pattern recognition

sed 6,092 7 363 stream editing utility

space 14,382 35 157 ADL interpreter

bc 14,288 1 4,000 basic calculator

gzip 7,266 9 217 compression utility

The Siemens Suite consists of seven benchmarks and 132

faulty versions. In our evaluation we omitted four versions:

version 32 of replace, version 9 of schedule2, and versions

4 and 6 of print-tokens. We omitted these versions because

either there were no syntactic differences between the correct

version and the faulty versions of the program or none of

the test cases failed when executed on the faulty version of

the program.

The space program has 38 faulty versions and several

different coverage-based test suites. We used 35 of the 38

faulty versions. For these versions we found a test suite that

achieved branch-coverage and resulted in a combination of

passing and failing tests cases. We had difficulty finding

such a test suite for the remaining three versions. There

are seven versions of the sed program with multiple faults

per version that can be activated separately. We activated

one fault for each of the seven versions. bc is a calculator

program with a reported buffer overflow fault [3]. Our bc

test suite is comprised of 4,000 valid randomly generated

programs with various sizes and complexities. gzip is a well

known compression utility with an established test suite [19].

In total, we evaluated 180 faulty versions. For each

test case, using the CIL Framework, we computed feed-

back reports to communicate test case success (or failure),

predicate-truth and predicate-evaluation [21]. Also using

CIL, we computed the dynamic control flow graph for each

function in each version. Our approach uses the feedback

reports and control flow graphs as inputs. The regression

models and the existing suspiciousness metrics are imple-

mented in the statistical language R [22].

B. Ranking Effectiveness

To measure the effectiveness of the suspiciousness metrics

we use an established cost-measuring function (Cost) [1]–

[8], [10]–[14], [23]. Cost measures the percentage of predi-

cates a developer must examine before the faulty statement is

found, assuming the predicates are presented in descending

order of suspiciousness. To compare two metrics A and B
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(a) Standard Tarantula as the reference metric.
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Figure 2. Tarantula Evaluation.

for effectiveness, we choose one metric, (B), as the reference

metric and subtract the Cost value for A from the Cost value

for B. If A performs better than B, then the Cost is positive

and if B performs better than A, the Cost is negative. For

example, for a given program, if the Cost of A is 30% and

the Cost of B is 40%, then the absolute improvement of

A over B is 10% because developers would examine 10%

fewer predicates using A instead of B.

We integrate the reduced bias metrics, ' cls,p and '
c,f
ls,p, into

the Tarantula, F1 and Ochiai metrics. We evaluate each

reduced bias metric in CBI (red) and ESP (white). For

each program version, the absolute improvement of each

reduced bias metric within each predicate-level debugger

is represented with a bi-colored bar. The height of the

colored portion of the bar closest to the x-axis reflects the

469

Authorized licensed use limited to: Old Dominion University. Downloaded on November 22,2024 at 15:44:08 UTC from IEEE Xplore.  Restrictions apply. 



0 10 20 30 40 50 60 70 80 900 10 20 30 40 50 60 70 80 90

-4
0

-2
0

0
2
0

4
0

6
0

-4
0

-2
0

0
2
0

4
0

6
0

A
b

s
o

lu
te

 I
m

p
ro

v
e

m
e

n
t 
(%

)

Faulty Version

A
b

s
o

lu
te

 I
m

p
ro

v
e

m
e

n
t 
(%

)

Faulty Version

(a) Standard F1 as the reference metric.
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(b) F1 integrated with τ
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as the reference metric.

Figure 3. F1 Evaluation.

improvement for the matching debugger. The total height

of both portions reflects the improvement for the debugger

matching the colored portion furthest from the x-axis.

1) Predicate-level Tarantula Suspiciousness Metric:

Here, we evaluate the effectiveness of the two reduced bias

metrics ' cls,p and '
c,f
ls,p compared to the standard Tarantula

suspiciousness metric in the predicate-level statistical de-

buggers CBI and ESP. ' cls,p and '
c,f
ls,p are obtained from

the models presented in Eq. 7 and Eq. 8, respectively. Fig.

2(a) shows that the reduced control flow confounding bias

estimate, ' cls,p, performs better than the standard Tarantula

metric on 94 program versions within CBI and ESP but it

performs worse on two versions. ' cls,p performs the same

as the standard Tarantula metric on 84 versions. Fig. 2(b)

compares ' cls,p and '
c,f
ls,p. It uses ' cls,p as the reference metric

and measures the Cost of ' cls,p subtracted from the Cost

of '
c,f
ls,p. '

c,f
ls,p performs better than ' cls,p for 68 of the 180

versions and it never performs worse.

2) Predicate-level F1 Suspiciousness Metric: Here, we

evaluate the effectiveness of ' cls,p and '
c,f
ls,p within the F1

metric in CBI and ESP. Fig. 3(a) shows that the F1 metric

employing ' cls,p performs better than the F1 metric using the

standard specificity measure on 92 versions within CBI and

ESP, but performs worse on seven versions. The metrics

perform the same on 92 versions. Fig. 3(b) compares F1

metric employing ' cls,p to the version '
c,f
ls,p. Once again, the

metric employing '
c,f
ls,p outperforms the metric using ' cls,p.

The F1 metric employing '
c,f
ls,p performs better than the F1

metric employing ' cls,p for 54 of the 180 programs and it

never performs worse.

3) Predicate-level Ochiai Suspiciousness Metric: Here,

we evaluate the effectiveness of ' cls,p and '
c,f
ls,p within the

Ochiai metric in CBI and ESP. Fig. 4(a) shows that the

Ochiai metric employing ' cls,p performs better than the

Ochiai metric using the standard specificity measure on 59

versions within CBI and ESP, but performs worse on two

versions. The metrics perform the same on 119 versions. Fig.

4(b) compares Ochiai metric employing ' cls,p to the version

using '
c,f
ls,p. Again, the metric employing '

c,f
ls,p outperforms

the metric using ' cls,p. The Ochiai metric employing '
c,f
ls,p

performs better than the Ochiai metric employing ' cls,p for

41 of the 180 programs and it never performs worse.

4) Discussion: Throughout the evaluation, the suspi-

ciousness metric employing '
c,f
ls,p is the most effective metric

within both CBI and ESP. These results show that control

flow and failure flow confounding bias exist in established

predicate-level suspiciousness metrics and that our metric,

'
c,f
ls,p, reduces or eliminates these confounding biases.

Space precludes a graphical comparison of '
c,f
ls,p with

the Importance measure. However, we evaluated Importance

against the reduced bias versions of the Tarantula, F1 and

Ochiai metrics employing '
c,f
ls,p. Table III shows that in the

preponderance of the program versions the metric employing

'
c,f
ls,p outperforms the Importance metric.

Furthermore, in Section IV-D the F1 metric employing

'
c,f
ls,p is evaluated favorably against the Importance metric

at different predicate sampling rates. Thus for CBI and

ESP and the evaluated programs, the suspiciousness metrics

employing '
c,f
ls,p are superior to the Importance measure.

Although the metrics ' cls,p and '
c,f
ls,p performed well in our

evaluation, each was not as effective as the standard metric

for some program versions. The faults in these versions

violate the coverage trigger assumption, which assumes that

the coverage of a statement corresponding to the predicate

p will necessarily trigger a failure, if the statement is faulty

[10]. However, covering a faulty statement corresponding to

predicate p may not be sufficient to trigger a failure because

the statement does not cause an invalid internal state or
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Table III
METRICS EMPLOYING IMPORTANCE VS. τ

c,f

ls,p
.

Metric Better than Same as Worse than
Importance Importance Importance

Tarantula 102 30 48
F1 110 41 29

Ochiai 114 38 28

Table IV
CBI AND ESP RELATIVE EFFICIENCY.

Metric Standard τ
c
ls,p

τ
c,f

ls,p

(CBI,ESP) (CBI,ESP) (CBI,ESP)

Tarantula 1.00,1.00 1.94, 1.24 2.16, 1.36
F1 1.05,1.02 1.97, 1.25 2.17, 1.37

Ochiai 1.06,1.04 1.99, 1.25 2.17, 1.37

the invalid state does not propagate to the programs output.

Often these faults correspond to missing statements where

the predicates corresponding to statements adjacent to the

missing code qualify as the fault.

The effectiveness of ' cls,p and '
c,f
ls,p relative to CBI and

ESP is also important to discuss. For the preponderance of

the program versions CBI offers more improvement than

ESP. However, for most of the program versions ESP incurs

less overall Cost for developers. This paradox can be ex-

plained. ESP has been shown to be more effective than CBI

when standard biased suspiciousness metrics are employed

[14]. While ' cls,p and '
c,f
ls,p improve the effectiveness of each

predicate-level debugger, ESP appears to improve less by

absolute measure because of its superior effectiveness. Sim-

ilarly, for most of the versions where negative improvement

is observed, the effectiveness of ESP degrades less than CBI.

C. Efficiency

We measured the relative computation time for each of the

different versions of the suspiciousness metrics used in our

evaluation for each program version. Table IV shows the

mean relative efficiency for the reduced bias metrics ' cls,p
and '

c,f
ls,p when integrated into the Tarantula, F1 and Ochiai

suspiciousness metrics. As Table IV shows, the algorithms to

compute the reduced bias metrics are not inefficient relative

to the algorithms that compute the standard suspiciousness

metrics. ESP is relatively more efficient than CBI because

ESP requires more computation time, which absorbs a

portion of the additional computational cost required to solve

the regression models for ' cls,p and '
c,f
ls,p. While ESP incurs

∼ 4.5x slowdown compared to CBI, it is more effective [14].

D. Sampling

Predicate-level statistical debuggers such as ESP and CBI

use instrumentation to collect predicate data. The collection

adds overhead to program execution. The overhead is limited

by employing sparse random sampling rather than complete

data collection. The sampling collects an unbiased represen-

tative set of program behavior across test cases. Here we
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as the reference metric.

Figure 4. Ochiai Evaluation.

evaluate '
c,f
ls,p under sparse sampling to determine the extent

to which the introduced uncertainty reduces its effectiveness.

Fig. 5 shows the Cost incurred by using the F1 metric

integrated with the reduced bias metric '
c,f
ls,p (shaded blocks)

within ESP and CBI compared to using the Importance

metric within ESP and CBI, (non-shaded blocks). The effec-

tiveness of ESP and CBI remains stable under sampling rates

of 1/10 and 1/100. For each of these rates, the version of

the predicate-level statistical debuggers using the F1 metric

employing '
c,f
ls,p outperforms its counterpart employing the

Importance metric. For less frequent rates the variance of

the Cost increases. This is expected given the introduction

of random sampling. At a sampling of 1/1,000 the F1

metric employing '
c,f
ls,p still outperforms the Importance

metric but the relative difference in effectiveness narrows.
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ciousness metric (non-shaded) and the F1 integrated with τ
c,f

ls,p
(shaded).

The performance of both metrics at a sampling rate of

1/10,000 reveals a trend: sufficiently infrequent rates will

reduce the effectiveness of ESP and CBI, regardless of the

suspiciousness metric used. However, the performance of

ESP and CBI under the more frequent rates shows that '
c,f
ls,p

can improve effectiveness of ESP and CBI up to a sampling

rate of 1/1,000. This is significant; research has shown that

sampling rates ≤ 1/1,000 significantly reduce overhead in

predicate-level statistical debuggers [1], [2].

E. Validity

Internal, external, and construct validity threats affect

our evaluation. Internal validity threats arise when factors

affect the dependent variables without evaluators knowledge.

It is possible that some implementation flaws could have

affected the evaluation results. However, our results for the

evaluated benchmarks are similar in magnitude to improve-

ments offered by Baah et al.’s statement-level work [11].

Threats to external validity occur when the results of our

evaluation cannot be generalized. Although we performed

our evaluations on nine programs with a total of 180 versions

and two different predicate-level statistical debuggers (CBI

and ESP), we cannot claim that the effectiveness observed

in our evaluation can be generalized to other faults in other

programs for other predicate-level statistical debuggers.

Threats to construct validity concern the appropriateness

of the metrics used in our evaluation. More studies into

how useful developers find predicate-ranking metrics need

to be performed [24]. However, the more accurate fault-

localization methods are the more meaningful such studies

will become.

V. RELATED WORK

Many debugging approaches use statistical analysis and

program coverage data to rank the suspiciousness of program

elements [1]–[12], [14]. However, none of these approaches

use causal inference to account for control flow and failure

flow confounding biases at the predicate-level.

A related approach is the Probabilistic Program Depen-

dence Graph (PPDG) [9]. The PPDG is a probabilistic

model of an entire program, which augments each node

of a program-dependence graph with a conditional proba-

bility table (CPT) characterizing the conditional-probability

distribution of the nodes states, given the states of its

parent nodes. Although the technique has been shown to be

effective, a node may have an anomalous state without being

a cause of a failure. In our approach, we estimate the causal

effect of a given predicate being true using a regression

model involving only the predicate and its forward control

flow predecessor predicate; CPTs are not needed.

State-altering approaches such as Delta Debugging and

IVMP attempt to find the cause of program failure by

altering program states and re-executing the program [5],

[23], [25]. Our approach is more lightweight than these types

of approaches. Performing experiments on altered programs

can be time consuming and requires an oracle to determine

the success or failure of each altered program. Also, previ-

ous evaluations suggest that stochastic distributions within

subject programs can degrade state-altering analysis [14].

Other debugging approaches use slicing to compute the

set of statements that potentially affect the values of a given

program point [26], [27]. These techniques do not provide

rankings to the developer to facilitate localization. Thus, it

is difficult to compare our approach with these approaches.

VI. CONCLUSION

Recent work has applied causal inference to reduce or

eliminate control and data flow dependence confounding

bias in statement-level statistical debuggers. Here we further

these efforts by applying and extending causal inference to

the predicate-level. First we adapted Baah et al.’s statement-

level definition of the forward control flow predecessor to

the predicate-level. Using the definition we provided a linear

regression model, which accounts for control flow confound-

ing bias and estimates the effect of a given predicate on a

program failure. Next, we extended the model to account

for failure flow confounding bias. Finally, we presented

an evaluation, which showed that the reduced bias metric,

'
c,f
ls,p, from our extended model significantly improved the

effectiveness of existing metrics.
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