
Out of Order and Causally Correct: Ready Event Discovery
through Data-Dependence Analysis

Erik J. Jensen
ejens005@odu.edu

Old Dominion University
Norfolk, Virginia, USA

Virginia Modeling, Analysis, and
Simulation Center

Su�olk, Virginia, USA

James F. Leathrum
jleathru@odu.edu

Old Dominion University
Electrical and Computer Engineering

Norfolk, Virginia, USA

Christopher J. Lynch
cjlynch@odu.edu

Old Dominion University
Norfolk, Virginia, USA

Virginia Modeling, Analysis, and
Simulation Center

Su�olk, Virginia, USA

Katherine Smith
k3smith@odu.edu

Old Dominion University
Norfolk, Virginia, USA

Virginia Modeling, Analysis, and
Simulation Center

Su�olk, Virginia, USA

Ross Gore
rgore@odu.edu

Old Dominion University
Norfolk, Virginia, USA

Virginia Modeling, Analysis, and
Simulation Center

Su�olk, Virginia, USA

Abstract
Data-dependence analysis can identify causally-unordered events
in a pending event set. The execution of these events is indepen-
dent from all other scheduled events, making them ready for ex-
ecution. These events can be executed out of order or in parallel.
This approach may �nd and utilize more parallelism than spatial-
decomposition parallelization methods, which are limited by the
number of subdomains and by synchronization methods. This work
provides formal de�nitions that use data-dependence analysis to
�nd causally-unordered events and uses these de�nitions to mea-
sure parallelism in several discrete-event simulation models.

A variant of the event-graph formalism is proposed, which as-
sists with identifying ready events, by more clearly visualizing data
dependencies between event types. Data dependencies between
two event types may be direct or indirect, where the latter case
considers the scheduling of intermediate events. Data dependencies
and scheduling dependencies in a discrete-event simulation model
are used to de�ne time-interval limits that support the identi�cation
of events that are ready for execution. Experimental results from
serial simulation testing demonstrate the availability of numerous
events that are ready for execution, depending on model charac-
teristics. The mean size of the ready-event set varies from about
1.5 to 110 for the tested models, depending on the model type, the
size of the model, and delay distribution parameters. These �ndings
support future work to develop a parallel capability to dynamically
identify and execute ready events in a multi-threaded environment.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

CCS Concepts
• Computing methodologies! Discrete-event simulation;
Massively parallel and high-performance simulations.

Keywords
Discrete-event simulation, data-dependence analysis, event-level
parallelism, independent events, available parallelism, causal order-
ing, spatial decomposition, event graphs, PDES

ACM Reference Format:
Erik J. Jensen, James F. Leathrum, Christopher J. Lynch, Katherine Smith,
and Ross Gore. 2018. Out of Order and Causally Correct: Ready Event
Discovery through Data-Dependence Analysis. In Proceedings of Make sure
to enter the correct conference title from your rights con�rmation email (SIGSIM
PADS ’25). ACM, New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 Introduction
Discrete-event simulation (DES) is widely used to simulate sys-
tems like manufacturing [13], supply-chain [27], transportation
[31], computing [21, 43, 44], and telecommunication [28] networks,
where performance improvements can lead to quicker insights into
system behavior and design optimization. Parallel discrete-event
simulation (PDES) typically utilizes spatial decomposition (SD) of
models into distinct logical processes (LPs), where each LP is a serial
simulation that may communicate with other LPs, to synchronize
in order to avoid causality errors [4, 8, 14, 18]. In SD parallelization,
the number of events available for parallel execution is limited by
the number of LPs, where the maximum number of events any
LP can execute concurrently is one. The number of LPs may be
limited by the decomposability of the model. An LP in an SD sys-
tem assumes events in its pending-event set are totally-ordered
according to timestamp (TS), meaning that beyond the �rst event
in the pending-event set, there is no capability to �nd additional
events that are ready for execution within an LP [23].

https://orcid.org/0002-7938-2704
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM Erik J. Jensen, James F. Leathrum, Christopher J. Lynch, Katherine Smith, and Ross Gore

While LP-level SD parallelization is the typical approach, DES
parallelization can take several forms, depending on which level of
the simulation is parallelized. Table 1 summarizes DES parallelism
levels and highlights event-level parallelism, which is the focus of
this work. In the case of event-level parallelism, multiple events in
an LP’s pending-event set may be executed simultaneously. This
work builds the foundation for a DES execution method which may
be used to achieve event-level parallelism for general-purpose DES.

G
ra
nu

la
rit
y

Fi
ne

st
C
oa

rs
es

t

Simulation
Parallelism Level

Description

Simulation-level multiple independent simula-
tion applications

LP-level multiple serial simulation pro-
cesses/threads in a simulation
application

Event-level multiple events in a multi-
threaded simulation process

Event-routine-level multiple tasks in the execu-
tion of an event, in a multi-
threaded simulation process

Table 1: Parallelism granularity in PDES, highlighting
event-level parallelism.

To justify the viability of such a method, this work seeks to
identify the available event-level parallelism in a DES model, using
data-dependence analysis (DDA) [1, 30]. Instead of assuming that
events in an LP’s pending-event set are totally ordered by timestamp
(TS), as is typical in SD parallelization methods, DDA is used in
this work to discover causal ordering in any partially-ordered event
set. If the event set is partially ordered, only some events impose
ordering, and other events exist in a causally-unordered state. To
explain the utility of causal ordering, as opposed to timestamp
(TS) ordering, �g. 1 takes a backward-looking approach, using a
completed event-execution sequence to visualize how causally-
unordered events may be executed OoO or in parallel. The event-
execution sequence in �g. 1 is partially ordered. Causally-unordered
events are grouped by a non-white color and are contiguous in
this simplistic example. All events in a group are ready to execute
when all events preceding the group have �nished executing. In
each sequence in �g. 1, within any grouping of causally-unordered
events, e.g. the set {2 ,3 ,4}, each event in each pair of events {2 ,3}, {2 ,4},
and {3 ,4} is mutually independent from the other event in the pair.
In general, mutual independence does not imply that two events
are totally causally unordered, meaning, independent from all other
events in a set.

In this work, DDA is used in a forward-looking approach, to
identify those causally-unordered events in an LP’s pending-event
set that may be executed out of order (OoO) and are ready for
execution. Henceforth, these events are referred to as ready events
(REs). State variable (SV) usage, event timestamps, and new-event
scheduling are considered when �nding these REs.

The event graph (EG) formalism depicts state changes within
each event and scheduling dependencies between events [5, 12, 34,

a b edc f g
3 5 22{9,14,17}

a b e
d
c

f
3 5 22{9,

14,
17}

(i)

(iii)

Wall-Clock Time

h i j k l m
31 38{26,30} {43,45,49}

h
g

{26,
30}

i j
31 38

k
l
m

{43,
45,
49}

n o p q r s
52 54 {57,60,65,66}

a b e dc f g
3 5 22{17,9,14}

(ii)
h i j kl m

31 38{30,26} {45,43,49}

n o r pqs
52 54 {66,65,57,60}

n o
52 54

s
r
q
p

{57,
60,
65,
66}

Figure 1: Three partially-ordered event-execution sequences,
for a simulation with events 0 through B. Sets of brightly-
colored causally-unordered events like {2,3, 4} may be exe-
cuted out of order ((ii)) or in parallel ((iii)). Wall-clock time
increases from left to right.

35]. Any DES model that may be represented as an event graph is a
candidate for parallelization through DDA. From the information in
an event graph, a lookup table may be generated in pre-processing
and used during a data-dependence-analysis-discrete-event simula-
tion (DDA-DES) to identify events that are ready for execution. For
DDA-DES, it is not necessary to identify an optimal decomposition
strategy, which considers load balancing and communication e�-
ciency, as is the case for traditional spatial-decomposition methods
[17, 32]. The signi�cant contributions of this work are:

• a strategy for identifying events that are ready to execute
within an LP’s pending-event set, based on pairwise mutual
independence, including mathematical de�nitions of:

(1) direct data dependency;
(2) indirect data dependency;
(3) event con�ict, which determines mutual independence;
(4) a time-interval limit that quanti�es mutual independence;
(5) the set of ready events (REs), which may be executed OoO

or in parallel without causality violation;
(6) OoO simulation divergence from the in-order simulation;
(7) divergence potential, given an OoO event;
• a variant of the event graph formalism, which adapts model
data for DDA-DES and visualizes data dependencies;

• an algorithm for measuring parallelism in a DES model, and
• experimental results that quantify the available parallelism
for multiple DES models.

The remainder of this paper is organized such that related work
is discussed in section 2, the essential concepts underlying DDA-
DES are explained in section 3, experimental results are in section 4,
and discussion about the �ndings and the direction of future work
are in section 5.

2 Related Work
Prior work on event-level DES parallelization has explored ap-
proaches such as parallelizing scheduling [19, 20, 41], leveraging

Out of Order and Causally Correct: Ready Event Discovery through Data-Dependence Analysis SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM

data-dependency analysis for specialized simulations [9–11, 26],
and speculative execution using heuristics [22]. However, these
methods are either domain-speci�c or lack support for general-
purpose DES models with parallelizable state-variable updates.

2.1 Event-Level DES Parallelization
Prior works have presented ideas related to event-level-DES par-
allelization, which may be able to parallelize scheduling [19, 20],
or prevent unnecessary rollbacks in an optimistic LP [33], or use
data dependencies to parallelize specialized types of discrete-event
simulations [9–11, 26], or speculatively execute events in parallel
while learning simulation behavior [22], e.g. But, prior to this work,
there is no work that approaches event-level DES parallelization
for general-purpose simulation models, where safe events can be
identi�ed de�nitively and SV updates can be parallelized. Further,
the authors have found no prior work that measures the available
parallelism during the simulation of a DES model, based on event
independence. Note, this di�ers from critical-path analysis (CPA),
which may be used to bound simulation runtime [3, 38, 39]. How-
ever, CPA is not a parallelization technique and is not designed to
identify independent events within a pending-event set during the
simulation of a DES model.

Jones [19, 20] proposed an early alternative called “concur-
rent simulation", which �nds parallelization through knowledge
of scheduling behavior. There is no capability to parallelize SV up-
dating, but scheduling may be parallelized. The design utilizes a
linked-list event set, which would not be useful for large models
with large event sets. The only experimental results presented are
from a small simulation model.

Soliman [37] demonstrated a practical application of data-
dependence analysis by running parallel simulations with pre-
computed sets of independent events that are generated from a
completed event-execution sequence. Independent events are iden-
ti�ed using prede�ned state-dependency rules. This approach has
no capability to automatically parallelize a running simulation in
which the event-execution sequence is unknown.

Quaglia and Baldoni [33] introduced the idea of weak causality
(WEC), which suggests how causally-unordered events in an event
set might be identi�ed, using SV-access analysis. Given an earlier
event and a later event in an event set, WEC can compare these
two events, to �nd immediate SV-access con�icts. However, though
it is inferred that scheduling is a necessary consideration, there is
no mechanism for comparing intermediate events, that the earlier
event might schedule, with the later event. The proposed use-case
for WEC is in an optimistic simulator LP, where unnecessary roll-
backs may be prevented if straggler events are independent from
later events that have already executed. This backward-looking
approach is appropriate for WEC, which has no capability in its
published form to �nd independent events in a forward-looking
manner, in a pending-event set. It is not a DES parallelization tech-
nique. No experimental results are provided.

Chen et al. [10, 11] introduced an OoO PDES simulator for the
SystemC and SpecC system-level description languages [15, 16],
leveraging data-dependence analysis between events to execute
them out of order. By statically analyzing event code, they identify
independent event-code segments and �nd parallelism within and

across simulation cycles. An extension [9] introduced prediction
mechanisms to further reduce con�icts and increase the number of
parallel tasks, achieving substantial speedup in computationally in-
tensive but simple and predictable applications like media encoding
and decoding.

Kunz et al. [22] experimented with probabilistic heuristics to
detect causality relationships. A centralized scheduler predicts if
the next event in the event set can safely execute, given that worker
threads may still be executing previously-distributed events. The
system state rolls back if causality is violated. This approach appears
to be useful only for long-running simulations, as it requires a
training phase and an adaptation phase before reaching a steady-
state phase. Further, it is unclear if this approach is useful beyond
the wireless mesh-network model used in this work and may be
successful for general-purpose DES.

Liu and Wainer [26] developed a technique for parallelizing
P-DEVS and Cell-DEVS models using multicore processors, com-
bining multiple levels of parallelism. Their work exploits SIMD-like
patterns found in these models, although this approach is limited
to models that utilize these easily-predictable patterns.

Wang et al. [42] converted the ROSS simulator [6] into a task-
based framework (ROSS-TB) for multigrained PDES, combining
both LP-level and event-level parallelism. A coordinator thread
distributes ready events to team threads, where ready events are
those with the same timestamp or otherwise identi�ed as causally
unordered within a simulation time window. This method is tested
using a four-node cluster and an airports model, demonstrating
e�ective load balancing and scalability through dynamic task dis-
tribution. The process that identi�es independent events is unclear.

2.2 Event Graphs
The event graph (EG) formalism models DES systems by repre-
senting state changes as vertices and scheduling as directed edges
connecting vertices [35]. State changes and scheduling may be con-
ditional or non-conditional. At each vertex, conditions are evaluated
only once per event execution, before updating SVs or scheduling
vertices [36]. An edge may indicate a non-zero scheduling delay
time as a number or variable at the tail of the edge, and conditional
scheduling with an “S" symbol on the edge and the condition.

Several extensions to the event graph (EG) formalism have been
proposed, including parameterization, which enables the passing of
arguments from a scheduling (or originating) vertex to a scheduled
(or terminating) vertex [5, 34]. Parameterization simpli�es repeti-
tive models by collapsing multiple instances of similar subgraphs
into a single parameterized grouping of vertices. Speci�c subgraphs
are accessed dynamically by passing index values as arguments
along the edges connecting vertices.

3 Data-Dependence-Analysis-DES
In this work, data-dependence and scheduling analyses are used
to �nd causally-unordered events in a general discrete-event sim-
ulation, for which event routines that contain SV-updating and
scheduling behavior are clearly de�ned, including minimum sched-
uling delays. This data may be presented in an event graph, for
the bene�t of visualization. DDA-DES selects events from an LP’s
event set that are ready for OoO and conservative execution.

SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM Erik J. Jensen, James F. Leathrum, Christopher J. Lynch, Katherine Smith, and Ross Gore

A pending event is considered ready to execute if it is mutually
independent from all events ahead of it in the event set. To deter-
mine if the :C⌘ event in the event set E is ready to execute, event
: must be compared with each event in E preceding : . Up to :�1
pairwise evaluations are made, where each evaluation determines
if the pair of events is mutually independent. If each pair of events
(9 ,:) is mutually independent, event : is causally unordered and
ready to execute. Section 3.1 explains how to determine mutual in-
dependence and how to de�ne the set of ready events using formal
de�nitions, section 3.1.1 provides a mathematical framework to
DDA-DES, and section 3.2 introduces a variant of the event graph
modeling formalism that bene�ts DDA-DES by abstracting away
low-level information and highlighting data dependencies.

3.1 Identifying Ready Events
At a high level, ready events (REs) are de�ned as those events in
the TS-ordered pending-event set E, which will not be a�ected by
preceding events in E and cannot a�ect preceding events in E, if
executed OoO. These events may execute immediately. Readiness
for the :C⌘ event in E requires mutual independence for each (9,:)
pair in E, where 9 2 {1, . . . ,:�1}, for :>1. The determination that
two events in a pair are mutually independent requires knowledge
of data dependencies and timing.

Consider a simulation with a non-empty pending-event set E,
where each event is a speci�c instance of an associated event type.
An event type de�nes the event routine, which determines state-
variable updates and scheduling of new events. An event contains
an event type and a TS that determines when the associated event
routine executes. Each event in E has an event type V⌧8 with a set
of SVs S8 that are read or written during event execution, where
the simulation model has = di�erent event types, and 8 2 {1, . . . ,=}.
There are three di�erent ways in which event routine 8 may use
SVs in S8 . For each state variable B8,✓ in S8 , where S8 has =8 state
variables, and ✓ 2 {1, . . . ,=8 }, event routine 8 may

(1) update B8,✓ ,
(2) read B8,✓ to update an SV in S8 , or
(3) read B8,✓ to evaluate a condition, which determines condi-

tional SV updating in B8,✓ or conditional event scheduling.
Case-(1) SVs are output state variables, meaning they are written

to memory, and case-(2) and case-(3) SVs are input state variables,
meaning they are read from memory. Within S8 , a state variable
may be both an input SV and an output SV. SVs in S8 are not nec-
essarily exclusive to S8 . Figure 2 visualizes input and output SVs
for Station- 9 in a tandem =-queue network. In each station, the
arrive and depart vertices both read from and write to the queue
and server variables & 9 and % 9 , meaning & 9 and % 9 are input and
output SVs in Arrive- 9 and Depart- 9 . Note, the Station- 9 EG
may be reduced to remove the Process- 9 vertex, according to the
rules in [35].

Consider that for two event types A and B, it may be true that
SA \ SB < ;. 1 This is demonstrated in �g. 2, where for each station
9 , SArrive�j \ SDepart�j < ;. If SA\B contains SVs that are output
SVs for either event type, there is a data dependency between these
event types. To be more speci�c, this case of SA\B < ;, where the
1To maintain consistency with the 8 notation, (i.e., event type 8 , S8 , and B8,✓) named
event types may map to integers in {1, . . . ,=}, e.g. A 7! 8=1,+1 , and B 7! 8=2,+2 .

 Station j, j >1

Arrive
j

(Pj>0)

tp

(Qj>0)

tt
Depart

j
if(Qj=0):
 Pj Pj+1

if(Qj>0):
 Qj Qj-1

if(Pj=0):
 Qj Qj+1

if(Pj>0):
 Pj Pj-1

Process
j

Arrive
1

ta

Figure 2: EG of an Arrive!Process!Depart station in an =-
queue tandem network, with blue input SVs and red output
SVs. Dotted line indicates abbreviated link between Arrive-1
and Arrive- 9 . Dashed line indicates possible edge between
Depart- 9 and Arrive- 9+1.

intersection set contains an output SV, is a direct data dependency
(DDD). In �g. 2 there is a direct data dependency between Arrive- 9
and Depart- 9 , which imposes causal ordering on events of these
types. De�nition 3.1 gives the mathematical de�nition of DDD, for
two event types A and B.

De�nition 3.1 (Direct Data Dependency (DDD)).

For two event types A and B :

A
DDD ��!B () SA \ SB = SA\B < ; ^�
SA\B \ SA$ < ; _ SA\B \ SB$ < ;

�
. (1)

De�nition 3.2 (Indirect Data Dependency (IDD)).

For three event types A, A+, and B :

A
IDD �!B () 9A+ |

⇣
A
reach����!A+ ^ SA+ \ SB = SA+\B < ; ^

�
SA+\B \ SA+$ < ; _ SA+\B \ SB$ < ;

� ⌘
. (2)

Data dependencies may also be indirect. To identify if two event
types have indirect data dependencies, the scheduling capabilities
of the model are signi�cant. Consider that for two event types A
and B, it may be true that there exists a scheduling path from A
to an event type A+. That is, A can reach A+, either immediately or
intermediately through proxy event types. In �g. 2, any event type
in Station- 91 can reach any event type in Station- 92, 91< 92. In
the case that A can reach A+, it may be true that SA+ \ SB < ;. If
SA+\B contains SVs that are output SVs for either A+ or B, there is an
indirect data dependency (IDD) between A and B. In other words, if
A can reach A+, and A+ and B have a DDD, then, transitively, A and B
have an IDD. Note, A+may be B. De�nition 3.2 gives a mathematical
de�nition for IDD, for two event types A and B.

As speci�ed in de�nition 3.3, events 0 and 1 in a pending-event
set E, which have event types A and B, are in con�ict if:

(1) A and B have a DDD, or
(2) A and B have an IDD, and there is an event type A+, such

that A+ is reachable from A, A+ and B have a DDD, and an 0+
event can be scheduled with a TS C0+  C1 .

Out of Order and Causally Correct: Ready Event Discovery through Data-Dependence Analysis SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM

8 Csim E R
30 23.11 {(3-D, 23.53), (1-A, 24.54), (2-D, 24.72), (1-D, 26.60)} {(3-D, 23.53), (1-A, 24.54), (2-D, 24.72)}
31 23.53 {(4-A, 23.69), (1-A, 24.54), (2-D, 24.72), (1-D, 26.60)} {(1-A, 24.54), (2-D, 24.72), (4-A, 23.69)}
32 23.69 {(4-P, 23.69), (1-A, 24.54), (2-D, 24.72), (1-D, 26.60)} {(4-P, 23.69), (1-A, 24.54), (2-D, 24.72)}
33 23.69 {(1-A, 24.54), (2-D, 24.72), (1-D, 26.60), (4-D, 32.99)} {(1-A, 24.54), (2-D, 24.72)}
34 24.54 {(2-D, 24.72), (1-A, 26.51), (1-D, 26.60), (4-D, 32.99)} {(1-A, 26.51), (2-D, 24.72)}
35 24.72 {(2-P, 24.72), (3-A, 24.87), (1-A, 26.51), (1-D, 26.60), (4-D, 32.99)} {(3-A, 24.87), (2-P, 24.72), (1-A, 26.51)}
36 24.72 {(3-A, 24.87), (1-A, 26.51), (1-D, 26.60), (4-D, 32.99), (2-D, 33.64)} {(3-A, 24.87), (1-A, 26.51)}
37 24.87 {(3-P, 24.87), (1-A, 26.51), (1-D, 26.60), (4-D, 32.99), (2-D, 33.64)} {(3-P, 24.87), (1-A, 26.51)}

Table 2: Simulation of 4-queue tandem network Tdm4, with C0⇠U(1, 2), C?⇠U(2, 10), CC⇠U(0.1, 0.2). Column 8 indicates IO event-
execution iteration. Events in E with DDD-ECs are bold; events with IDD-ECs are bold and red.

If a pair of events (0,1) do not have an event con�ict (EC), they are
mutually independent. Case (1) ECs and case (2) ECsmay be referred
to as DDD-ECs and IDD-ECs. De�nition 3.3 implies that there is
an upper time-interval limit between A-type event timestamps and
B-type event timestamps, at which point the potential for con�ict
arises. If A and B have a DDD-EC, this time limit is zero. If A and B
have an IDD-EC, this time limit is de�ned by minimum scheduling
delays and the shortest path to a DDD. Note, A and Bmay have both
types of ECs, direct and indirect. However, if there is a DDD-EC,
it is not necessary to consider an IDD-EC, as it cannot introduce
a time-interval limit less than zero. De�nition 3.4 quanti�es this
upper time-interval limit, for event-type pair (A, B) independence.

Note, if A and B have a DDD, A = V⌧✓ , that is, A
reach����!A^ A DDD ��!B. In

that case, the time to traverse the shortest path from A to B0, A 2 B0,
is zero.

De�nition 3.3 (Event Con�ict (EC)).

For events 0,0+,1 with types A, A+, B, timestamps C0, C0+, C1 :

0
EC !1 () A

DDD ��!B _
⇣
A

IDD �!B ^ 9A+ |
�
A
reach����!A+ ^ A+ DDD ��!B ^ min(C0+)C1

� ⌘
. (3)

De�nition 3.4 (Event-Type-Pair Independence Time Limit (ITL)).

For a model ⌧ with event types VG:={V⌧1 , . . . , V⌧= } and
alias types A, B, B0, A7!V⌧8 , B7!V⌧9 , B

0 7!V⌧: , 8, 9,:2{1, . . . ,=},

B0 :=
⇢
V⌧✓ 2VG | A reach����!V⌧✓ ^ V⌧✓

DDD ��!B, ✓2{1, . . . ,=}
�
:

X⌧A,B :=
8>><
>>:
time

✓
A
min
====)B0

◆
, if B0<;,

1, otherwise,

where A
min
====)B0 is the minimum of all shortest paths,

from A to each B0 2 B0, using minimum edge delays. (4)

The high-level de�nition of REs can now be updated to re�ect
knowledge of data dependencies and scheduling dependencies. An
RE A is any event in the TS-sorted event set E, whose SVs will not be
updated by preceding events in E or potential intermediate events
scheduled by those preceding events, and which cannot update
the SVs of preceding events in E, if A is executed OoO. The set R
is composed of all REs in E at any point during the simulation of

the DES model. R is de�ned mathematically in de�nition 3.5, for
a speci�c DES model ⌧ , at a speci�c point in the simulation of ⌧ ,
using the terms de�ned as follows:

• ⌧ : the DES model, = event types,
• V⌧ : the set of event types in G, size =,
• N⌧ : the set of initial events, in a simulation of ⌧ ,
• X⌧ : the set of executed events, in a simulation of ⌧ ,
• X⌧⇤ : a speci�c set of executed events, in a simulation of ⌧ ,
used to derive R⌧N,X⇤ from E⌧N,X⇤

• E⌧N,X⇤ : the timestamp-sorted pending-event set in a simula-
tion of ⌧ that is initialized with events in N⌧ , after events
in X⌧⇤ have executed (size<),

• R⌧N,X⇤ : the set of ready events in a simulation of⌧ that is ini-
tialized with events inN⌧ , after events inX⌧⇤ have executed,
R⌧N,X⇤ ✓ E⌧N,X⇤ (size<<),

• 4: : the :C⌘ event in E⌧N,X⇤ , :2{1, . . . ,<},
• V⌧:: : the event type of 4: , : 7!:: , ::2{1, . . . ,=},
• C: : the TS of event 4: ,
• 4 9 : the 9C⌘ event in E⌧N,X⇤ , 92{1, . . . ,:�1}, for :>1,
• V⌧9 9 : the event type of 4 9 , 9 7! 9 9 , 9 92{1, . . . ,=},
• C 9 : the TS of event 4 9 ,
• X⌧9 9,:: : the ITL for the event-type pair (V⌧9 9 ,V⌧::), and
• C:�C 9 < X⌧9 9,:: : a condition for 4: to be in R⌧N,X⇤ , specifying
that the TS di�erence between events 4: and 4 9 is less than
the ITL for the event-type pair (V⌧9 9 , V⌧::).

De�nition 3.5 (DDA-DES Ready Event Set
�
R⌧N,X⇤

�
).

R⌧N,X⇤ :=

(
4: 2 E⌧N,X⇤

�����
84 9 2 E⌧N,X⇤ , 9<:,

C:�C 9 < X⌧9 9,::

)
(5)

The ITL for each event pair in⌧ may be pre-computed and arranged
in a lookup table �⌧ . Any events 4 9 and 4: in any E⌧ map to
enumerated event types V⌧9 9 and V⌧:: , which correspond to indices
in �⌧ . The time limit X⌧9 9,:: in de�nition 3.5 is found at �⌧ (9 9,::).

Table 2 logs serial in-order (IO) simulation output from a 4-queue
tandem network, that is, for 9=4 in �g. 2, abbreviated as Tdm4. Event
types in the table are abbreviated. Within the event set at each it-
eration, events with DDD-ECs or IDD-ECs are highlighted, and
the remaining ready events are listed. Given the data dependencies
of the model, no two Arrive and Depart events from the same

SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM Erik J. Jensen, James F. Leathrum, Christopher J. Lynch, Katherine Smith, and Ross Gore

Arrive
1

Process
1

Depart
1

Arrive
2

Process
2

Depart
2

Arrive
3

Process
3

Depart
3

Arrive
4

Process
4

Depart
4

0

0

min(tp)

min(tp)

min(tp)

min(tt)

min(tt)

min(tt)
0

DDD

Figure 3: Visualization of the IDD-EC for 8=33 in table 2,
for events (1-A, 24.54) and (4-D, 32.99). Blue timestamps are
the minimum times at which events can be scheduled, im-
mediately or intermediately, from Arrive-1 at 24.54. In the
Arrive-1–Depart-4 ITL calculation, Arrive-1 to Arrive-4 is
the shortest path to a DDD with Depart-4.

station may execute independently at the same time. Therefore,
the (1-D, 26.60) event is in con�ict with a 1-� event at all iter-
ations shown, thus the DDD-EC for (1-D, 26.60). There are two
events with IDD-ECs, one of which is (4-D, 32.99), whose con�ict
with (1-A, 24.54) in 8=33 is depicted in �g. 3. Figure 3 shows, from
Arrive-1, the shortest path to con�ict with Depart-4, which is
Arrive-4, 6.3 time units following the execution of Arrive-1 at
24.54. To determine this most-conservative scenario, the diagram
ignores any conditionality in the original EG in �g. 2 and assumes
only minimum scheduling delays.

3.1.1 Mathematical Framework. Let S := {S1, . . . , S=} denote the
set of all sets of SVs, associated with each event type V⌧8 2 V⌧ ,
where V⌧ := {V⌧1 , . . . , V⌧= } is the set of event types in the DES
model ⌧ . Each set of state variables S8 2 S corresponds to an
event type V⌧8 . Assume the absence of simultaneous events in the
simulation of ⌧ .

For each state variable B8,✓ 2 S8 , let B8,✓ (?) represent its value at
the ? (th) discrete time step, 0  ?  ?✓✓ , where ?✓✓ is the current
B8,✓ discrete-state-change count, and subscript ✓✓ indexes SV B8,✓ in
the set of all SVs in⌧ . Index ✓✓ 2 {1, . . . ,# }, where # is the number
of SVs in the model ⌧ . If B8,✓ is an output SV in S8 , 0  @8  ?✓✓ ,
where @8 is the number of executions of event type V⌧8 . The TS of
execution number @8 of event type V⌧8 is de�ned by C8@8 . For each

output SV in S8 , SV time step number ?✓✓ corresponds to SV TS
C✓✓ = C8@8 . The set of all timestamps for event type V⌧8 , is given by
T8 := {C81, . . . , C8@8 }.

For event type V⌧8 , the set of all values of each B8,✓ (@) at each time
step @, 0  @  @8 , for @8 time steps, is in S8 := {S81, . . . , S8@8 }, where
S8@ := {B8,1 (@), . . . , B8,=8 (@)}. Values in S8@8 ⌘ S8 , if SVs in S8 have not
been updated since S8@8 was recorded. The simulation trace (T , S)
contains all T8 and all S8 , 8 2 {1, . . . ,=}. De�nition 3.6 speci�es
the conditions under which a serial OoO simulation of model ⌧ is
inconsistent with the in-order simulation of ⌧ , using the OoO and
in-order traces.

De�nition 3.6 (OoO Simulation Divergence).

A serial OoO simulation of DES model ⌧ has diverged from
the in-order simulation of ⌧ , given OoO simulation trace

(T , S) and in-order simulation trace (T (IO) , S(IO)) :
OoOS (⌧) < IO(⌧) () 98 2 {1, . . . ,=}, 9@ 2 {1, . . . ,@8 },

9B8,✓ 2 S8 |
⇣ �
C8@ < C8 (IO)

@
�
_
�
B8,✓ (@) < B (IO)

8,✓ (@)
� ⌘
. (6)

De�nition 3.7 (Potential for Divergence).

A serial OoO simulation of DES model ⌧ may diverge from the
in-order simulation of ⌧ , given OoO event 4: with event

type V⌧:: executes at TS C: :

OoOS (⌧) IO(⌧) | 4: () 9V⌧8 2 V⌧ , V⌧8 <V⌧:: |⇣ �
Skk\i \ Skk$ < ; _ Skk\i \ Si$ < ;

�
^

T8 < T8 (IO) (<C:)
⌘
_ T:: < T:: (IO) (<C:) . (7)

Before executing an OoO event 4: , it is possible to check that 4:
may cause simulation divergence, using de�nition 3.7. This states
that OoO execution of 4: may cause divergence if:

(1) there is an event type V⌧8 that shares SVs with event type V⌧:: ,
for which these SVs are output SVs in either V⌧:: or in V⌧8 ,
and there is an inconsistency in the states of the executed
V⌧8 –event TS records, up to the execution of 4: at TS C: ,
between the serial OoO run and the IO run, or

(2) there is an inconsistency in the states of the executed V⌧::–
event TS records, up to the execution of 4: at TS C: , between
the serial OoO run and the IO run.

If (2) is true, the OoO simulation will certainly diverge. In either
case, if 4: executes at this point, the state of the simulation of
⌧ from the perspective of 4: is inconsistent with the analogous
event-local state in the in-order simulation, that is, inconsistent
with consideration to the execution of all prior dependent events.
V⌧::–input SVs may be inconsistent with the expected values in the
in-order simulation, at the point of 4: execution. SV-inconsistency
is not guaranteed under these circumstances, since SV updates may
be conditional, or perhaps by chance the SVs could be equivalent.
Note, de�nition 3.7 may function without an exact sequence of
speci�c timestamps, for each dependent event type and for V⌧:: ,
to satisfy the requirement that OoOS (⌧) will not diverge if event
4: executes OoO. However, the number of completed executions,

Out of Order and Causally Correct: Ready Event Discovery through Data-Dependence Analysis SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM

for each event type, at the speci�c time C: must be known. So, for
practical reasons, T8 and T:: are used.

Given the TS-ordered pending-event set E, and a pair of events
(4 9 , 4:), 9,: 2 {1, . . .=}, 9<: , in E, with event types V⌧9 9 , V

⌧
:: , de�ni-

tion 3.7 is su�cient for identifying potential divergence caused by
the following problematic cases:

(1) con�ict between 4 9/+ input SVs and 4: output SVs,
(2) con�ict between 4 9/+ output SVs and 4: input SVs, and
(3) con�ict between 4 9/+ output SVs and 4: output SVs,

where 4 9/+ is shorthand for event 4 9 or any event 4 9+ scheduled by
4 9 . In any case, if 4 9 and 4: are causally ordered, and 4: is executed
OoO, de�nition 3.7 can detect the potential for divergence, before
executing 4: . If there is con�ict for an (4 9 , 4:) pair, then there is a
V⌧8 in de�nition 3.7 corresponding to V⌧9 9 or V

⌧
9 9+.

T������ 3.8. Given a set of ready events R⌧N,X⇤ , each event A~
in the set, ~ 2 {1, . . . ,<<}, with TS C~ and event type V⌧~~ may be
executed in any order without causing simulation divergence.

P����. This is proven by contradiction. Assume that executing
ready events in R⌧N,X⇤ in any order may cause simulation divergence,
according to de�nition 3.7. This supposes that for any A~ 2 R⌧N,X⇤ ,

(1) the event-local state of the simulation is dependent on an
event AG 2 R⌧N,X⇤ , G 2 {1, . . . ,<<},~ < G , or

(2) the event-local state of the simulation is dependent on a
non-ready eventF in E⌧N,X⇤ with TS CF , CF < C~ .

In either case, call the dependent event 3 , which has a TS C3 and
event type V⌧33 . For event 3 to exist, 3 and A~ must be in con�ict,

that is, 3
EC !A~ . For this to be true, C~ � C3 >= X⌧33,~~ , meaning

event 3 , or another event that 3 may schedule immediately or
intermediately, can a�ect the event-local simulation state of A~
implied in de�nition 3.7, where 4: A~ . This implies that 3 and A~
are a causally-ordered event pair, in which case, A~ 8 R⌧N,X⇤ . É

3.2 Data-Dependence Event Graph
The event-graph formalism is modi�ed to data dependence event
graph (DDEG) to better de�ne and visualize the SV and scheduling
information in a simulation model’s EG, for DDA-DES. The modi�-
cations to the event graph formalism are enumerated as follows:

(1) For each EG vertex, event-routine SV usage is distilled to
sets of input and output SVs.

(2) Con�icting SV relationships between vertices are depicted
with data-dependency edges.

(3) Only minimum scheduling delays are considered.
(4) Self-scheduling edges are eliminated.
(5) Conditional scheduling of new events is regarded as and

depicted as non-conditional.
The DDEG of a simulation model does not replace the EG, for the

purpose of understanding and implementing a simulation model,
as some key information is not included in the DDEG. The DDEG
is used to understand the DDA simulation of the model, that is,
how the DDA simulation executive [24, 25, 41] selects ready events.
This knowledge may be encapsulated in an independence time limit
(ITL) lookup table, which is pre-computed prior to simulation.

A1

B1

DDD

I:{}
O:{X1}

I:{X2}

O:{X2}

A2

B2

A3

B3

I:{X1}

O:{}

I:{X2}

O:{X2}

DDD

I:{X3}

O:{}

I:{X3}

O:{}

I:{X4}

O:{X4}

A4

B4

I:{X4}

O:{X4}

DDD

I:{X5}

O:{X5}

A5

C5

I:{X5}

O:{X5}

B5DDD

Figure 4: DDEG data-dependence relationships depicted by
data-dependency edges. Vertices shown may be subsets of
graphs, which have additional vertices and edges.

 Station j, j >1

Arrive
j min(tp)

Depart
j

DDD

(min(tp)+ min(tt)

I:{Pj,Qj}

O:{Pj,Qj}

I:{Pj,Qj}

O:{Pj,Qj}

min(tt))

Arrive
1

(j-1)*

Figure 5: An Arrive!Depart station DDEG. The EG is re-
duced, removing the unnecessary Process vertex, and then
translated to the DDEG, removing conditionality and self-
scheduling edges, and using minimum scheduling delays.

Modi�cation (1) clearly de�nes SV usage for each vertex, which
assists in drawing SV-usage and data-dependence relationships
between vertices in (2). Seeing these relationships with data-
dependency edges may provide insight into the capacity of a model
for OoO and parallel execution. Figure 4 provides multiple examples
of SV usage and corresponding data-dependency edges.

As stated in modi�cation (3), the DDEG considers only minimum
scheduling delays. These minimum delays are used to compute
the shortest paths between vertices, for ITL calculations, as per
de�nition 3.4. For similar reasons, modi�cation (4) is implemented,
removing self-scheduling edges. These edges are irrelevant for
computing shortest paths for DDA-DES.

Modi�cation (5) to the EG formalism is needed for DDA-DES,
as conditional scheduling is regarded as non-conditional. This is a
constraint that DDA-DES requires to ensure causality. Currently,
there is no “optimistic" mode, with the capacity to correct causality
violations, as exists for optimistic SD-PDES [7, 18].

In �g. 5, the Arrive!Process!Depart station EG is translated
to a DDEG, ful�lling variant requirements (1)-(4). Note, there is
no possibility of pairwise event independence within station 9 , as
stated in section 3.1.

SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM Erik J. Jensen, James F. Leathrum, Christopher J. Lynch, Katherine Smith, and Ross Gore

4 Packet-Routing Network Model Experiments
Several packet-routing network simulation models are used to test
DDA-DES parallel capacity. Each network node is similar to the
Arrive!Process!Depart station model in �g. 2, with additional
packet-routing functionality in the arrival and departure vertices.
Also, the implementations lack the super�uous Process event type,
which can be removed without a�ecting functionality. In this case,
an arrival event can directly schedule a departure, if a processor
is available, and a departure event can schedule another depar-
ture, if there are more packets in the queue. For all models, one
processor is available per node. Various network topologies are
employed, including ring, 2-D and 3-D mesh, and 3-D torus. The
2-D and 3-D models feature adaptive routing, similar to strategies
employed for network-on-chip (NoC) packet routing in [2, 29, 40].
For these models with adaptive (or dynamic) routing, several hop
radii are tested, where each node has queue-size information for
all neighbors within a speci�ed number of hops. At each hop, a
locally-optimal route is identi�ed.

Table 3 de�nes experimental parameters for each model, includ-
ing model size and dimensions, tested hop radii and delay distribu-
tion con�gurations, and the number of packets generated in each
node. Each model is tested with several triangular-delay distribu-
tion con�gurations, which scale transit delays relative to processing
delays, as de�ned in table 4. Note that some nodes in each con�gu-
ration have quicker generation delays (C6), to create busier regions
in the network. Algorithm 1 de�nes at a low level how the simula-
tion models are executed, to measure the number of ready events
(REs) that are available throughout the simulation runs. Red text
in algorithm 1 refers to formal de�nitions in de�nition 3.5. That is,
when the working event sets E and R are equivalent to the formal
event sets E⌧N,X⇤ and R⌧N,X⇤ , E and R are in red. Gray text in algo-
rithm 1 indicates executed-event set data and operations that are
super�uous to the experimental design, but support references to
the formal de�nitions of E⌧N,X⇤ and R⌧N,X⇤ .

Results from algorithm 1 for each experimental scheme are in
table 5 and �g. 6, where each plot marker in �g. 6 is the mean of
all means of M, for a given delay-distribution con�guration tested
with ten di�erent random-number generator seed values. That is,
take the mean M33 of each M33 for a given con�guration using
seed index 33 , 33 2 {1, . . . , 10}, and then the number plotted is
the mean of {M1, . . . ,M10}. In table 5, the minimum, median, and
maximum ready-event measurements correspond to plotted values
on each line in �g. 6. For the tested schemes, the mean size of the
ready-event set varies from roughly 1.5 to 110. These extremes
correspond to the 64-node four-hop torus model and the 729-node
one-hop 2D mesh model. If the ring model were tested with 729
nodes, it likely would exhibit greater parallelism than this 2D mesh
model. Note, these measurements are the results of �nding and
executing all ready events in the pending-event set in an iterative
manner, as de�ned in algorithm 1.

According to table 5 and �g. 6, the available parallelism in a
model varies greatly, depending on relationships with neighboring
nodes, the size of the model, and delay distribution parameters.
There is a trend of decreasing parallelism, as the predictability
of the future state of a model decreases. For example, in the ring
model, any node may be a�ected by incoming packets from only

Table 3: Experimental Network Model Schemes

Model Sizes Dims. Hop Delay Num.
Radii Con�gs. Gens.

Ring (1D) 64 64 N/A 1-10 100

Mesh (2D) 64 8×8 1, 2, 4 1-10 100
729 27×27 1, 2, 4 1-10 100

Mesh (3D) 64 4×4×4 1, 2, 4 1-10 100
729 9×9×9 1, 2, 4 1-10 100

Torus (3D) 64 4×4×4 1, 2, 4 1-10 100
729 9×9×9 1, 2, 4 1-10 100

Table 4: Triangular-Delay Distribution Con�gurations

Con�g. Generate (C6) Process (C?) Transit (CC)
1

(10, 12, 16) (2, 3, 4)

(0.50, 0.75, 1.00)
2 (1.00, 1.50, 2.00)
3 (1.50, 2.25, 3.00)
4 (2.00, 3.00, 4.00)
5 (2.50, 3.75, 5.00)
6 (3.00, 4.50, 6.00)
7 (3.50, 5.25, 7.00)
8 (4.00, 6.00, 8.00)
9 (4.50, 6.75, 9.00)
10 (5.00, 7.50, 10.00)

Algorithm 1 Experimental Design for Network Model Simulations
Require: ⌧ : network simulation model with = nodes,

E: empty pending-event set
�
when E shown, E = E⌧N,X⇤

�
,

R: empty ready-event set
�
when R shown, R = R⌧N,X⇤

�
,

N⌧ : non-empty initial-event set (size =),
X⌧ : empty executed-event set,
X⌧⇤: empty reference executed-event set

Ensure: M: set of all R size measurements
1: Set E N⌧

2: Set M []
3: while E is not empty do
4: Identify all ready events in E, copy to R
5: Append |R| toM
6: while R is not empty do
7: Randomly select an event A from R
8: Execute A and schedule new A events in E
9: Remove A from R, E and move to X⌧

10: end while
11: Set X⌧⇤ X⌧

12: end while

two directions, but in the 3D mesh and 3D torus models, incoming
packets may arrive from six directions. This behavior explains the
decreasing parallelism with higher-dimensional models. For 2D and
3D models, larger hop radii reduce parallelism since nodes have
more data dependencies, which increases opportunities for event
con�ict. For example, for the 8 ⇥ 8 2D mesh models with hop radii
1, 2, and 4, the maximum number of parallel departure events are

Out of Order and Causally Correct: Ready Event Discovery through Data-Dependence Analysis SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM

32, 16, and 4, under ideal conditions. Queues within the hop radius
cannot update during route planning. In addition to the e�ects that
network topology and route-planning data dependencies have on
parallelism, there is a clear positive correlation between the size of
the model and the available parallelism, across all tested schemes.

Finally, changing the delay distribution parameters changes the
speed with which a node may a�ect the future state of another node.
This is seen clearly in the ring model, where parallelism appears to
be positively correlated withmin(CC)/min(C?). As minimum transit
delays increase, relative to processing delays, packets in neigh-
boring nodes are more distant, and the future state of a node is
increasingly predictable. However, this increase in parallelism is
asymptotic for larger transit delays, as model parallelism reaches
saturation. This correlation is less clear with the 2D and 3D models,
for the tested con�gurations. Perhaps the network topologies cre-
ate more complex relationships between nodes, where increasingly
long transit delays cannot so proportionately increase event readi-
ness, compared with the ring model. Further analysis regarding the
interaction of these factors and their e�ect on event readiness is
left for future work.

Table 5: Network Model Ready-Event Statistics

Network Size Hop Mean Ready Events
Radius Min Median Max

Ring (1D) 64 N/A 26.07 55.22 60.16

Mesh (2D)

64
1 7.82 11.32 12.30
2 4.27 5.15 5.36
4 2.26 2.43 2.45
1 60.84 98.68 110.14

729 2 29.56 39.48 41.53
4 12.04 13.90 14.14

Mesh (3D)

64
1 6.37 9.95 10.77
2 3.26 4.03 4.12
4 1.74 1.84 1.84
1 40.17 80.04 87.84

729 2 16.72 25.15 25.85
4 5.71 6.81 6.84

Torus (3D)

64
1 4.96 8.12 8.65
2 2.52 3.06 3.10
4 1.53 1.57 1.57
1 36.57 78.39 85.44

729 2 13.87 22.17 22.67
4 4.10 5.03 5.04

To be certain that events are being executedOoO, table 6 and �g. 7
provide evidence of OoO execution. For each of the experimental
schemes in table 6 and �g. 7, the OoO event-execution sequence is
compared with the in-order event-execution sequence. Each OoO-
run event is located in the in-order sequence, and the di�erence
in the index values, of the same events in the two sequences, is
appended to a set of all such event-order di�erences for the OoO
run. After the OoO run completes, the mean of this set of di�erences
is taken, to get an aggregate measurement for the OoO run. To get
the values in table 6 and �g. 7, take the mean of all such single-
run means, across all seed-varied runs for a given experimental

1 2 3 4 5 6 7 8 9 10

Delay Distribution Configuration (C)

0

10

20

30

40

50

60

M
ea

n
Si

ze
R

Rng64-C Msh8-2D-1H-C

Msh8-2D-2H-C

Msh8-2D-4H-C

Msh4-3D-1H-C

Msh4-3D-2H-C

Msh4-3D-4H-C

Trs4-3D-1H-C

Trs4-3D-2H-C

Trs4-3D-4H-C

(a) 64-nodes experiments.

1 2 3 4 5 6 7 8 9 10

Delay Distribution Configuration (C)

0

20

40

60

80

100
M

ea
n

Si
ze

R

Msh27-2D-1H-C

Msh27-2D-2H-C

Msh27-2D-4H-C

Msh9-3D-1H-C

Msh9-3D-2H-C

Msh9-3D-4H-C

Trs9-3D-1H-C

Trs9-3D-2H-C

Trs9-3D-4H-C

(b) 729-node experiments.

Figure 6: Mean ready-event measurements for simulation
experiments using 64-node and 729-node network schemes.
Numerical values of some plotted data points are in table 5.

Table 6: Event-Execution Order Di�erence Statistics

Network Size Hop Mean Order Di�erence
Radius Min Median Max

Ring (1D) 64 N/A 53.41 133.26 232.18

Mesh (2D) 64
1 14.40 23.47 24.08
2 7.80 9.85 10.10
4 2.81 3.01 3.04

Mesh (3D) 64
1 12.14 18.52 18.73
2 5.52 6.49 6.77
4 1.41 1.46 1.49

Torus (3D) 64
1 10.03 13.65 14.23
2 3.44 3.90 4.01
4 0.81 0.82 0.83

SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM Erik J. Jensen, James F. Leathrum, Christopher J. Lynch, Katherine Smith, and Ross Gore

1 2 3 4 5 6 7 8 9 10

Delay Distribution Configuration (C)

0

50

100

150

200

250

300

350

400

M
ea

n
E
ve

nt
-E

xe
cu

ti
on

O
rd

er
D

i�
er

en
ce

Rng64-C Msh8-2D-1H-C

Msh8-2D-2H-C

Msh8-2D-4H-C

Msh4-3D-1H-C

Msh4-3D-2H-C

Msh4-3D-4H-C

Trs4-3D-1H-C

Trs4-3D-2H-C

Trs4-3D-4H-C

Figure 7: Mean event-execution order di�erence measure-
ments, for 64-node experiments. Numerical values of some
plotted data points are in table 6.

scheme. For all 64-node experimental schemes, this composite mean
varies from roughly 0.8 for the four-hop torus model to 232 for the
ring model, meaning this torus model exhibits scant unordered-
ness, and the ring model is highly unordered. Recall that this torus
model also demonstrates the least parallelism of all the experimental
models. There is a clear relationship between unordered-ness and
parallelism, as it is the capacity of a model to execute events OoO
that yields parallelism, as is depicted in �g. 1.

To validate that OoO runs are consistent with in-order runs, each
event type generates a trace, where upon each event execution, the
event timestamp and the value of each input SV and each output
SV at the time of execution is recorded. Then, each OoO event-
type trace may be compared with each in-order event-type trace,
to check for divergence, as de�ned in de�nition 3.6. In this work,
all experimental OoO runs are consistent with the corresponding
in-order runs, according to this de�nition.

5 Discussion and Future Work
This work has measured the available event-level parallelism in
several discrete-event simulation models, using data dependencies
and scheduling dependencies to identify events that are ready to
execute. These events are referred to as ready events.

Ready events are identi�ed by applying data-dependence anal-
ysis to discrete-event simulation to determine state-variable re-
lationships between simulation model event types. These state-
variable relationships, along with scheduling dependencies, are
used to de�ne mutual independence between pairs of event types.
This pairwise mutual independence is quanti�ed as a time limit
(ITL), which speci�es themagnitudewithwhich timestamps belong-
ing to these event-type pairs may di�er and still maintain mutual
independence. Several mathematical de�nitions are introduced,
which support the de�nitions of the ITL and the set of ready events.
A variant of the event-graph formalism, data-dependence event
graph (DDEG), is proposed, which bene�ts this novel approach,
data-dependence-analysis-DES (DDA-DES). DDEG abstracts away
low-level state-variable updating and scheduling capabilities that

are invisible to DDA-DES. Multi-factorial experiments that measure
model parallelism demonstrate or imply several points:

(1) Model parallelism can be measured explicitly, meaning that
given a DES model ⌧ with a set of experimental parameters,
it is possible to de�ne exactly what the set of ready events
R⌧N,X⇤ is at any point in the simulation, based on the set of
initial events N⌧ and an exact set of executed events X⌧⇤.
Assuming the absence of simultaneous events, this is a well-
de�ned and deterministic set of events.

(2) Model parallelism is dependent on several factors, including
network topology, network size, data dependencies between
neighboring nodes, and delay distribution parameters. Ex-
perimental results are consistent with model characteristics,
that is, models that feature fewer data dependencies between
neighboring nodes exhibit greater parallelism.

(3) For some models, the de�nitions presented that support the
identi�cation of ready events may not not always capture
realistic model behavior, and are perhaps too restrictive.

This �nal point refers to the behavior of the 2D and 3D models,
in which outgoing packets at neighboring nodes, which cannot visit
or re-visit a node of interest, may still needlessly threaten to a�ect
the future state of a node, according to the ITL in de�nition 3.4.
The execution of an event at a neighboring node cannot a�ect the
future state of the node of interest through data dependencies, as
there is no pathway to the node of interest. In this case, there must
be special rules for determining if one event type may schedule
another event type, either immediately or intermediately, based on
parameters that de�ne the state of the model. Say there is a type-A
event with an outgoing packet scheduled at a node in the vicinity
of a type-B-event node, where the type-A packet cannot visit or
re-visit the type-B node. Referring to de�nition 3.4, the network
topology should be arti�cially constrained in this case such that

A
reach����!V⌧✓ ^ V⌧✓

DDD ��!B is not true, where V⌧✓ is an event type that
has a direct data dependency (DDD) with event-type B. In this case,
V⌧✓ is an arrival event type on the type-B node. To implement this
constraint, network edges should be removed in this case.

In summary, all tested models demonstrate the ability to contin-
uously or regularly execute multiple events in parallel, with up to
110 ready events available on average per event-execution cycle.
These �ndings justify continued research into �nding parallelism
in DES models, and creating a practical approach to the dynamic
identi�cation of ready events, for parallel execution. DDA-DES may
bene�t models that are not easy to parallelize through spatial de-
composition (SD), such as the 2D and 3D models presented in this
work, which use queue data from neighboring nodes for decision
making. Future work may include but is not limited to:

• further analysis of relationships between model types and
parameters, pending-event sets, and ready-event sets,

• modi�cation of de�nitions to �nd increased parallelism,
while still maintaining consistency with in-order execution,

• experimentation to measure parallelism in other DESmodels,
• comparisons to SD-method parallel capacities,
• the development of parallel DDA-DES (DDA-PDES) algo-
rithms, implementations, and experiments, and

• integration of DDA-DES into multi-LP SD methods.

Out of Order and Causally Correct: Ready Event Discovery through Data-Dependence Analysis SIGSIM PADS ’25, June 23–26, 2025, Santa Fe, NM

References
[1] Randy Allen and Ken Kennedy. 1987. Automatic translation of Fortran programs

to vector form. ACM Transactions on Programming Languages and Systems
(TOPLAS) 9, 4 (1987), 491–542.

[2] Giuseppe Ascia, Vincenzo Catania, Maurizio Palesi, and Davide Patti. 2008. Im-
plementation and analysis of a new selection strategy for adaptive routing in
networks-on-chip. IEEE transactions on computers 57, 6 (2008), 809–820.

[3] Oran Berry and David Je�erson. 1985. Critical path analysis of distributed
simulation.. In SCS Conf. Distributed Simulation. 57–60.

[4] Randal R Bryant. 1977. Simulation of packet communication architecture com-
puter systems. (1977).

[5] Arnold H Buss. 1996. Modeling with event graphs. In Proceedings of the 28th
conference on winter simulation. 153–160.

[6] Christopher D Carothers, David Bauer, and Shawn Pearce. 2002. ROSS: A high-
performance, low-memory, modular Time Warp system. Journal of parallel and
distributed computing 62, 11 (2002), 1648–1669.

[7] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto. 1999.
E�cient optimistic parallel simulations using reverse computation. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS) 9, 3 (1999), 224–253.

[8] K. Mani Chandy and Jayadev Misra. 1979. Distributed simulation: A case study
in design and veri�cation of distributed programs. IEEE Transactions on software
engineering 5 (1979), 440–452.

[9] Weiwei Chen and Rainer Dömer. 2013. Optimized out-of-order parallel discrete
event simulation using predictions. In 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 3–8.

[10] Weiwei Chen, Xu Han, Che-Wei Chang, Guantao Liu, and Rainer Dömer. 2014.
Out-of-order parallel discrete event simulation for transaction level models. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 12
(2014), 1859–1872.

[11] Weiwei Chen, Xu Han, and Rainer Dömer. 2012. Out-of-order parallel simula-
tion for ESL design. In 2012 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 141–146.

[12] BK Choi. 2013. Modeling and simulation of discrete event systems. Wiley.
[13] Jonas Friederich, Wentong Cai, Boon Ping Gan, and Sanja Lazarova-Molnar. 2023.

Equipment-centric Data-driven Reliability Assessment of Complex Manufactur-
ing Systems. In Proceedings of the 2023 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation. 62–72.

[14] Richard M Fujimoto. 2000. Parallel and Distributed Simulation Systems. John
Wiley & Sons.

[15] Daniel D Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing
Zhao. 2012. SpecC: Speci�cation language and methodology. Springer Science &
Business Media.

[16] Thorsten Grötker. 2002. System Design with SystemC™. Springer Science &
Business Media.

[17] Martin C Herbordt, Md Ashfaquzzaman Khan, and Tony Dean. 2009. Parallel
discrete event simulation of molecular dynamics through event-based decompo-
sition. In 2009 20th IEEE International Conference on Application-speci�c Systems,
Architectures and Processors. IEEE, 129–136.

[18] David R Je�erson. 1985. Virtual time. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 7, 3 (1985), 404–425.

[19] Douglas W Jones. 1986. Concurrent simulation: An alternative to distributed
simulation. In Proceedings of the 18th conference on Winter simulation. 417–423.

[20] Douglas W Jones, C-C Chou, Debra Renk, and Steven C Bruell. 1989. Experi-
ence with concurrent simulation. In Proceedings of the 21st conference on Winter
simulation. 756–764.

[21] Yao Kang, Xin Wang, and Zhiling Lan. 2023. Workload interference prevention
with intelligent routing and �exible job placement on dragon�y. In Proceedings
of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
23–33.

[22] Georg Kunz, Mirko Sto�ers, James Gross, and Klaus Wehrle. 2012. Know thy
simulation model: analyzing event interactions for probabilistic synchronization
in parallel simulations. In 5th International ICST Conference on Simulation Tools
and Techniques 2012 (SIMUTools 2012); Desenzano, Italy, 19-23 March 2012. 119–
128.

[23] Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed
system. In Concurrency: the Works of Leslie Lamport. 179–196.

[24] James F Leathrum, Roland R Mielke, Andrew J Collins, and Michel A Audette.
2017. Proposed uni�ed discrete event simulation content roadmap for M&S
curricula. In 2017 Winter Simulation Conference (WSC). IEEE, 4300–4311.

[25] James F Leathrum Jr, Reejo Mathew, and Thomas W Mastaglio. 2011. Modeling
the impact of security and disaster response on cargo operations. Simulation 87,
8 (2011), 696–710.

[26] Qi Liu and Gabriel Wainer. 2012. Multicore acceleration of discrete event system
speci�cation systems. Simulation 88, 7 (2012), 801–831.

[27] Tushar Mohanrao Lone. 2024. Development of an open-source library for sup-
ply chain modeling and optimization. In Proceedings of the 38th ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation. 73–74.

[28] AA Lyubchenko, EY Kopytov, AA Bogdanov, and VA Maystrenko. 2020. Discrete-
event simulation of operation and maintenance of telecommunication equipment
using anylogic-based multi-state models. In Journal of Physics: Conference Series,
Vol. 1441. IOP Publishing, 012046.

[29] Terrence Mak, Peter YK Cheung, Kai-Pui Lam, and Wayne Luk. 2010. Adaptive
routing in network-on-chips using a dynamic-programming network. IEEE
Transactions on industrial electronics 58, 8 (2010), 3701–3716.

[30] Dror E Maydan, John L Hennessy, and Monica S Lam. 1991. E�cient and exact
data dependence analysis. In Proceedings of the ACM SIGPLAN 1991 conference on
Programming language design and implementation. 1–14.

[31] Zhuoxiao Meng, Anibal Siguenza-Torres, Mingyue Gao, Margherita Grossi,
Alexander Wieder, Xiaorui Du, Stefano Bortoli, Christoph Sommer, and Alois
Knoll. 2023. Towards Discrete-Event, Aggregating, and Relational Control Inter-
faces for Tra�c Simulation. In Proceedings of the 2023 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation. 12–22.

[32] Eric Mikida and Laxmikant Kale. 2018. Adaptive methods for irregular parallel
discrete event simulation workloads. In Proceedings of the 2018 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation. 189–200.

[33] Francesco Quaglia and Roberto Baldoni. 1999. Exploiting intra-object dependen-
cies in parallel simulation. Inform. Process. Lett. 70, 3 (1999), 119–125.

[34] Robert G Sargent. 1988. Event graph modelling for simulation with an application
to �exible manufacturing systems. Management science 34, 10 (1988), 1231–1251.

[35] Lee Schruben. 1983. Simulation modeling with event graphs. Commun. ACM 26,
11 (1983), 957–963.

[36] Lee Schruben and Enver Yucesan. 1994. Transforming Petri nets into event graph
models. In Proceedings of Winter Simulation Conference. IEEE, 560–565.

[37] Hussam M Soliman and Adel S Elmaghraby. 1995. The parallel-event approach
to discrete-event simulation. ACM SIGSIM Simulation Digest 24, 3 (1995), 21–39.

[38] Sudhir Srinivasan and P Reynolds. 1993. On critical path analysis of parallel
discrete event simulations. Computer Science Report No. TR-93-29 (1993).

[39] Simon JE Taylor, Farshad Fatin, and Thierry Delaitre. 1995. Estimating the
bene�t of the parallelisation of discrete event simulation. In Proceedings of the
27th conference on Winter simulation. 674–681.

[40] Mohammad Trik, Saadat Pour Moza�ari, and Amir Massoud Bidgoli. 2021. Pro-
viding an Adaptive Routing along with a Hybrid Selection Strategy to Increase
E�ciency in NoC-Based Neuromorphic Systems. Computational Intelligence and
Neuroscience 2021, 1 (2021), 8338903.

[41] Brandon Waddell and James F Leathrum. 2019. A multithreaded simulation
executive in support of discrete event simulations. In 2019 Winter Simulation
Conference (WSC). IEEE, 2677–2688.

[42] Yizhuo Wang, Zhiwei Gao, Weixing Ji, Han Zhang, and Duzheng Qing. 2018.
Exploiting task-based parallelism for parallel discrete event simulation. In 2018
26th Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP). IEEE, 562–566.

[43] Xiaoliang Wu, Alexander Kolar, Joaquin Chung, Dong Jin, Martin Suchara, and
Rajkumar Kettimuthu. 2024. Parallel simulation of quantum networks with
distributed quantum state management. ACM Transactions on Modeling and
Computer Simulation 34, 2 (2024), 1–28.

[44] Xiongxiao Xu, Kevin A. Brown, Tanwi Mallick, Xin Wang, Elkin Cruz-Camacho,
Robert B. Ross, Christopher D. Carothers, Zhiling Lan, and Kai Shu. 2024. Surro-
gate Modeling for HPC Application Iteration Times Forecasting with Network
Features. In Proceedings of the 38th ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation. 93–97.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Related Work
	2.1 Event-Level DES Parallelization
	2.2 Event Graphs

	3 Data-Dependence-Analysis-DES
	3.1 Identifying Ready Events
	3.2 Data-Dependence Event Graph

	4 Packet-Routing Network Model Experiments
	5 Discussion and Future Work
	References

