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Abstract

Cyber security is a complex, multifaceted, poorly understood problem domain. As the use of digital technology

grows, the threat environment continues to evolve dynamically. Traditional approaches for cyber security focus on

understanding and addressing vulnerabilities. While this mindset is necessary it is not sufficient. A better understanding

of the nature of existing and future cyber threats is needed to make informed defensive decisions that optimize the use

of limited resources. Here, we address this deficiency by applying Markov Chain methods to descriptions of observed

cyber threats. The goal of this effort is to identify previously unknown themes of common vulnerabilities. We present

the results of our study and discuss its implications. Then we conclude and provide direction for future work.
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Introduction

Today’s evolving cyber threat environment contains a myriad
of advanced attack scenarios. Adversary behavior is no
longer primarily focused on widespread, disruptive activity.
Instead it is characterized by targeted, multi-stage attacks
that aim to achieve specific tactical objectives and establish
a persistent foothold into vulnerable enterprises.

From a defensive perspective these cyber threats reflect
the kill chain shown in Figure 1 [1]. The adversary’s
attack unfolds in a series of steps, ending with the attacker
having an established foothold in the vulnerable enterprise’s
network. Adversaries are typically assumed to be nation
states and those engaged in conducting cyber crime, financial
threats, industrial espionage and terrorism [2, 3].

The ability of these cyber threats to cause ongoing
damage requires a more proactive approach to cyber security.
Responding to incidents after an exploit is costly in terms
of the effective impact and the level of effort necessary
to root out the adversary’s established foothold. To be
proactive, cyber defenders must move towards stopping the
adversary’s advance before the exploit stage of the kill chain.
This defensive strategy requires a move from after-the-fact
incident investigation and response to one driven by sharing
information about cyber threats [4, 5].

The Structured Threat Information eXpression language
(STIX) facilitates this effort [6, 7, 8]. STIX is a

Recon
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Control

Execute
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Left of Hack Right of Hack

Figure 1. Cyber kill chain from left to right. Graphic
reproduced from [1]

collaborative community-driven standardized language to
represent structured cyber threat information. It provides
a common mechanism for analyzing, specifying indicator
patterns, sharing information and managing responses
related to cyber threats. Numerous organizations have
employed STIX to characterize observed threats and share
this information with other trusted partners. This information
sharing paradigm has improved the understanding of the
overall landscape of cyber threats [1, 9, 10].
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Unfortunately, even this use of information sharing is
still reactive. The collection and sharing of data via STIX
requires that at least one organization fall victim to a
cyber threat before information can be collected. Ideally, a
cyber intelligence gathering approach would exist that would
enable all organizations to move left of the hack without
any becoming exploited. Such an approach would provide
understanding of the overall landscape of cyber threats, even
those that had not yet been attempted by adversaries, to
enable organizations to be proactive about cyber security
[11? ].

In this paper, we work towards this goal by taking
a Markov Chain approach to modeling cyber threats. A
Markov Chain is a random process that undergoes transitions
from one state to another on a state space. The state
transitions in a Markov Chain are memorylessness - the
probability of the next state depends only on the current
state and not on the sequence of events that preceded
it. In our work we create a Markov Chain of STIX
descriptions of two previously observed cyber threats.
Then we generate trajectories through the Markov Chain
representation to identify previously unknown themes of
common vulnerabilities cyber threats can exploit.

This ability to identify previously unknown themes of
common vulnerabilities enables a more proactive approach
to cyber security. Analysts can study the intelligence
provided by our tool to understand what common themes
of vulnerabilities adversaries could exploit. Then they can
create proactive defenses against them. Furthermore, because
we leverage STIX descriptions, as new cyber threats are
described the resulting themes uncovered by the analysis
will be automatically updated. The result is an analysis
methodology that will not become outdated because as new
attacks are described, it accounts for the properties of those
attacks in its analysis through the Markov Chain model.

The remainder of this paper proceeds as follows. First, we
provide background information related to Markov Chains.
Next, we describe our approach to creating and sampling
a Markov Chain built from existing STIX descriptions of
cyber threats. Finally, we employ our model to identify and
analyze a previously unknown common vulnerability theme.
We conclude our work by summarizing our contributions and
providing direction for future research.

Approach

Understanding our approach to modeling documented cyber
threats requires an understanding of the Structured Threat
Information eXpression language (STIX) for describing

cyber threats and Markov Chain methods. Here we provide
an overview of each and discuss how they work in
combination to generate and analyze previously unknown
common vulnerability themes.

Markov Chains

A Markov chain is a stochastic system with the Markov
property. A Markov Chain moves through a series transitions
among of random states. However, the Markov property
only enables transitions between adjacent states. In other
words, the next state of the system depends entirely on the
current state. This property makes Markov chains useful
for describing systems that follow a chain of linked events,
where what happens next depends only on the current state
of the system [12].

0.900.10

0.10
0.90

Figure 2. Markov Chain used to simulate the rainy and sunny
days in April.

Rainy Days In April An example helps elucidate the
structure and use of Markov Chains. Suppose, we want to
determine the maximum number of rainy days in a row that
occur in April. Based on existing weather data from past
Aprils we know that, if it’s sunny (S) one day, then there
is a 90% chance it will be sunny the next day. Similarly,
if it’s rainy (R) one day, then the next day there is also a
90% chance that it will be rainy. This data enables us to
construct a Markov Chain to generate rain predictions that
are representative of the month of April. The Markov Chain
is shown in Figure 2.

Using the Markov Chain we can generate a possible
trajectory for the upcoming April. For example, one possible
trajectory is: S S S S S S S R R R S S S S S S S S S R R R R R
R R S S S S. In this trajectory the maximum number of rainy
days in a row are the final seven rainy days shown in bold.
While this trajectory does not exactly match any previous
April data that we collected it is representative of the data
set as a whole. It is representative because the trajectory is
generated from a Markov Chain where the probability of
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Gore, Padilla and Diallo 3

transitioning between states was parameterized by the data
set as a whole.

Unfortunately, a single trajectory through the Markov
Chain does not enable us to answer our question of what is
the maximum number of rainy days in a row in April. In
order to answer this question we need to repeatedly sample
the Markov Chain shown in Figure 2 to generate many
possible trajectories of the upcoming April. Figure 3 shows
a summary of the distribution of the maximum number of
rainy days in a row from all the trajectories resulting from our
sampling. There are a range of outcomes for the maximum
number of rainy days in a row in April based on the past
data. It is possible there could be as few as one rainy day
in a row or as many as 10. However, by generating possible
trajectories and summarizing them with a histogram we can
see that the most likely outcome is that there will be 5 - 6
rainy days in a row in April.

The previous example is not meant to be rigorous, but
to illustrate how a Markov Chain is applied to model and
analyze possible future trajectories based on past data. Next,
we describe our Markov Chain model of cyber threats
described in the STIX language. Then we present a case
study where the Markov Chain is applied to generate a
previously unknown theme of common vulnerabilities cyber
threats can exploit.

0
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1 2 3 4 5 6 7 8 9
Maximum Number of Rainy Days In A Row Within Trajectory

co
un
t

Distribution of 10,000 Trajectories Through April Rain Markov Chain

Figure 3. Histogram summarizing the distribution of the
maximum number of rainy days in a row.

Markov Chain of STIX Described Cyber Threats

Recall, our goal is to: (1) create a Markov Chain model of
cyber threats described in STIX language and (2) analyze
possible trajectories through the Markov Chain to identify
previously unknown themes of common vulnerabilities. First
we describe STIX and then we discuss how we model STIX
descriptions using a Markov Chain.

STIX is a collaborative community-driven effort to
define and develop a standardized language to represent
structured cyber threat information. It provides a common
mechanism for analyzing, specifying indicator patterns,
sharing information and managing responses related to cyber
threats. It does this in a structured fashion to support more
effective cyber threat management processes and application
of automation.

Furthermore, STIX is flexible and extensible. Existing
standardized languages may be leveraged as optional
extensions where appropriate and numerous flexibility
mechanisms are designed into the language. Finally, STIX
is agnostic to any particular technology or type of cyber
threat. As a result it is focused on capturing information
as opposed to assuming a specific technology or requiring
specific components to be included in an attack [6, 7, 8].

The process of constructing a Markov Chain to model
possible STIX trajectories begins with identifying the core
components of a cyber threat description in STIX. Each
component in a STIX description is annotated with a
set of attributes. These attributes describe the particular
instantiation of the component that is employed in the cyber
threat. The eight core components of STIX are:

• Observables - stateful properties or measurable events
pertinent to the operation of computers and networks.
Examples of observables include Information about a
file, a registry key value, a service being started, or an
HTTP request.

• Indicators - information about valid time windows,
likely impact, sightings of the indicator, structured
test mechanisms for detection, related campaigns and
suggested courses of action.

• Incidents - discrete instances of Indicators affecting
an organization along with information discovered
or decided during an incident response investigation.
Incidents consist of data such as time-related
information, parties involved, assets affected, impact
assessment, intended effects, nature of compromise,
confidence in characterization and handling guidance.

• Tactics, Techniques and Procedures (TTPs) - specific
adversary behavior (attack patterns, malware, exploits)
exhibited, resources leveraged (tools, infrastructure,
personas), information on the victims targeted (who,
what or where), intended effects and relevant kill chain
phases.

• Campaigns - the suspected intended effect of the
adversary, the related TTPs leveraged, the related
incidents, confidence in the assertion of intent and
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characterization of the Campaign, and activity taken
in response to the Campaign.
• Threat Actors - characterizations of malicious actors

(or adversaries) representing a cyber attack threat
including presumed intent and historically observed
behavior. These characterizations include identity,
suspected motivation, suspected intended effect and
handling guidance.
• Exploit Targets - vulnerabilities or weaknesses in

software, systems, networks or configurations that are
targeted for exploitation. These include vulnerability
identifications or characterizations, weakness identifi-
cations or characterizations and configuration identifi-
cations or characterizations.
• Courses Of Action - specific measures to be taken

to address threat whether they are corrective or
preventative to address ExploitTargets, or responsive
to counter or mitigate the potential impacts of
Incidents including cost and efficacy.

Figure 4. STIX architecture highlighting the relationships
among the core cyber threat concepts in STIX. Graphic
reproduced from [1].

The interactions among these eight core components is
specified by STIX architecture shown in Figure 4. The
figure highlights the types of relationships that can exist
among these core components via the directed arrows. The
bracketed asterisk on each of the arrow labels implies that
each relationship may exist zero to many times [1].

The biggest difference between a description of a cyber
threat in STIX and the rainy days example is that the core
components in STIX can be nested inside one another. For
example, each of the cyber threats shown in Figure 5 are valid
STIX descriptions even though components are included
within other components in each of the three descriptions.

To address this issue we create two algorithms to translate
a set of STIX descriptions into a Markov Chain that can
generate possible trajectories. Algorithm 1 constructs a
Markov Chain Model of a cyber threat given a set of STIX
descriptions. Algorithm 2 generates a possible cyber threat
trajectory through the model. We describe each of these
algorithms next.

Associated
Campaign

Related 
TTP

Related 
TTP

Related
Incident

Related
Indicator Observable

Attribution
Related

TTP

Exploit
Target

Description #1 Description #2 Description #3

Observed
TTP

Figure 5. Three different STIX valid compositions of the
STIX components.

Algorithm 1 employs the STIX architecture shown in
Figure 4 as a graph G. Graph G has 8 vertices (G.V ) and
23 edges (G.E). Each edge has indicators which specify the
vertex the edge travels from and the vertex the edge travels
to. Also each edge in G is augmented with a queue (G.E.Q).
The algorithm takes as input the graph G and a set of STIX
descriptions S. Each of the STIX descriptions in set S is a
tree like those shown in Figure 5. Each tree is composed
of the vertices (si.V ) and edges (si.E). These vertices and
edges are a subset of those in G. However, it is important to
note that each vertex in si.V is annotated with attributes to
describe the particular instantiation of the component that is
employed in the cyber threat being described.

Algorithm 1 traverses the vertices in each tree in S along
the edges. Each time it traverses an edge in the tree it adds the
vertex (with annotation) it is traveling to, to the queue for the
corresponding edge in G. It also adds a NIL to the queue for
each edge in G connected to the vertex it traveled from but
was not traversed. Once the entire tree has been traversed, it
is encoded in G by: (1) adding the vertices (with annotations)
within the tree to the queues for the appropriate edges and (2)
encoding those paths not taken in the tree by adding a NIL
value to the queues for the appropriate edges. Algorithm 1 is
specified in pseudocode below.

Algorithm 2 uses the Markov Chain constructed by
Algorithm 1 to print a depth first trajectory. It takes the
graph created by Algorithm 1, a starting vertex and a
number indicating the maximum number of vertices to
include at any level in the trajectory as parameters. Since

Prepared using sagej.cls



Gore, Padilla and Diallo 5

Data: G - Graph of STIX Architecture, S = s1, ...sn -
Set of STIX Descriptions

Result: G - The original graph now encoded as a
Markov Chain Model of S

for each si in S do
currentTree = si;
// start the traversal of the current tree
for each currentTree.ej in currentTree.E do

currentEdgeInTree = currentTree.ej ;
// get the to and from vertex of the edge being
traversed
fromV ertex =
currentEdgeInTree.ej .from;
toV ertex = currentEdgeInTree.to;
// add the toVertex to the queue in G
corresponding to the edge being traversed
add toV ertex to G.currentEdgeInTree.Q;
// now add NIL to the queue for any other edge
in G emanating from fromVertex
otherEdges = G.E;
for each otherEdgesj in otherEdges do

edgeToAddNilTo = otherEdgesj ;
if edgeToAddNilTo.from =
fromV ertex and edgeToAddNilTo 6=
currentEdgeInTree then

add NIL to G.edgeToAddNilTo.Q;
end

end
end

end
Algorithm 1: STIX Markov Chain Construction Algorithm

all STIX descriptions begin with a campaign component,
the algorithm is initially called with a campaign component
chosen at random from the STIX descriptions in S. The
algorithm then recursively finds edges and destinations
vertices from the current vertex. Each edge and destination
vertex is printed as part of the trajectory. If a NIL vertex
is selected, then the current path in the trajectory is ended
and paths starting at any remaining edges are explored. The
trajectory is finished being printed when all paths have been
explored and ended with a NIL vertex. The Markov Chain is
guaranteed to include a NIL vertex for every edge because
one is placed in the queue for each edge every time the edge
is not taken during the construction of the Markov Chain in
Algorithm 1. Algorithm 2 is specified in pseudocode below.

Case Study

To evaluate our Markov Chain modeling approach we
conducted a case study inspired by combining STIX
descriptions of two canonical cyber threats: (1) APT1
an advanced persistent threat from one of China’s cyber
espionage groups and (2) Nitro a coordinated attack to
steal information from chemical makers, government offices,

Data: G - Markov Chain Model of STIX Descriptions,
CV - The Current Vertex, MaxLevel - The max #
of vertices at any level in a trajectory

Result: A printed depth first trajectory through G
print(CV );
if CV = NIL then

return;
else

n = rand(0, MaxLevel)
for 0 to n do

EdgeToSample = pickAtRandom(edge from
G.E where edge.from = CV );
print(EdgeToSample);
NewV ertex =
pickAtRandom(EdgeToSample.Q);
return GenerateTrajectory(G, NewV ertex,
MaxLevel);

end
end

Algorithm 2: STIX Markov Chain Trajectory Generation
Algorithm

defense firms, and human-rights groups. Each of these
cyber threats have been described in STIX for the purposes
of information sharing and gathering cyber intelligence.
Combined they contain descriptions of more than 1200
TTPs, 200 exploit targets, 150 threat actors, 50 indicators,
30 incidents, 25 observables and 20 courses of action within
2 campaigns.

Sensitivity Analysis of MaxLevel Parameter for Generation of STIX Markov Chain Trajectories
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Figure 6. Analysis of how sensitive the usefulness of a
generated STIX Markov Chain Trajectory is to the Max Level
parameter.

First, we create a Markov Chain by augmenting the graph
of the STIX architecture with the STIX description of APT1
and the STIX description of Nitro. Then, we collect different
samples from the Markov Chain by generating trajectories.
To identify the parameterization of Algorithm 2 that
produces the most effective trajectory for this case study we

Prepared using sagej.cls
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explored five different values of the MaxLevel parameter: 2,
4, 8, 16, V ertexDependent. The V ertexDependent value
reflects the maximum number of edges for a given vertex
among the APT1 and Nitro descriptions. For each of the
five different values we generated 100 trajectories through
the Markov Chain for the APT1 and Nitro STIX description.
Then we manually inspected each one to determine if it was
useful or not. Here, the term useful means that the STIX
description reflects a cyber threat that would be of interest to
someone charged with securing a cyber system. The number
of useful trajectories resulting from each parameterization
are shown in Figure 6.

Based on this analysis we employed the version
of Algorithm 2 using the V ertexDependent parameter
to generate 10,000 possible trajectories. Of the 10,000
trajectories generated from our case study Markov Chain
only∼ 1/10 (1,035) of them only featured annotated vertices
or edges only found in the STIX description of one of the
two cyber threats. The remaining 8,965 trajectories featured
annotated vertices and edges from both of the threats.
Within the 8,965 trajectories, several trajectory subsets were
generated frequently. A histogram of the 25 most commonly
generated trajectory subsets containing at least 6 vertices and
10 edges is shown in Figure 7.

The combination of automatically: (1) generating STIX
descriptions that feature annotated vertices and edges from
multiple cyber threats and (2) isolating the most common
subsets reflecting vulnerability themes demonstrates the
utility of our approach. Personnel tasked with defending a
cyber system can manually inspect each of the common
subsets in Figure 7 to identify any areas where they are
vulnerable to an attack that combines elements from two
constituent threats. Since they are only inspecting the most
common (i.e. most likely) trajectories the manual burden on
personnel is reduced.

Figure 7 shows that one common subset trajectory is
generated significantly more frequently (∼ 2x) than any
other. This subset is shown in Figure 8. Figure 8 shows how a
vulnerability in JAVA is exploited by attackers using several
different types of malware in combination to manifest a TTP.

The incident featured in our generated TTP is attacked
through a vulnerability in JAVA (CVE-2012-4681) that
allows adversaries to bypass security checks and download,
install and use malware on a victim host. Within the
TTP there are three different types of malware programs
(downloader, backdoor and utilities) used in combination.
First, GOGGLES, downloads and installs an encoded
payload from a remote location and launches it. Next, several
backdoors allowing the execution of arbitrary commands
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Figure 7. The 25 Most Common STIX Subset Trajectories
Generated By Our Markov Chain.

Figure 8. Previously unknown theme of common vulnerability.

through a cmd.exe instance are installed in the victim’s
machine using BOUNCER and SWORD. In addition the
AURIGA malware family of gains access to the file system
and registry to create a persistent backdoor for the virus by
registering AURIGA as a service on the victim host. Finally,
the LIGHTDART utility is used to upload information from
the host to the attacker [13, 14].

Once identified those with a cyber security background
can see this tactic to exploit the vulnerability will be
effective. However, many systems may be vulnerable to it
because: (1) it reflects one of the major exploit targets from
Nitro, but (2) the strategy and the indicator malware used
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in the TTP are representative of APT1. As a result the
vulnerability may not be protected against attacks from the
indicator malware. However, our Markov Chain identified a
common vulnerability theme - cyber threats which exploit
Nitro vulnerabilities can attack with APT1 malware. In
response, personnel can add rules to their security system
which prohibit the indicator malware shown in Figure 8 from
interacting with vulnerable application, JAVA.

It is important to note, that uncovering a cyber threat
which possessed characteristics of APT1 and Nitro was an
expected outcome of our case study. Our Markov Chain
provides a structure to combine the description of both
threats. However, by generating 10,000 trajectories we are
able to show that: (1) this cyber threat is the most common
theme of attack that can be generated when combining the
two and (2) while this threat has not yet been observed it is
possible and could exploit a possible vulnerability in many
systems. Furthermore, this information is actionable. For
example, it could be included as a test in a benchmark suite
that insurance companies use to evaluate the cybersecurity
risk of current and prospective policyholders.

Limitations and Assumptions

Our approach is an effective means to generate possible
cyber threat trajectories based on a corpus of STIX cyber
threat descriptions. Furthermore, because the trajectories
are representative of the entire set of descriptions one
can analyze them to identify a previously unknown theme
of common vulnerabilities. However, there are multiple
limitations and assumptions within our approach.

First, our approach can only identify previously unob-
served cyber threats vulnerability themes which are a com-
binations of past threats. However, not all cyber threats are
extensions of the past. There is some evidence to suggest
that cyber events are generally Byzantine in nature and
difficult to predict based on past events [15]. In addition,
our approach to constructing a Markov Chain and generating
possible trajectories is resource and time intensive. However,
in both cases the resources and time being used are computer
related as opposed to human related. Making this type of
tradeoff has enable formal methods such as model checking
and theorem proving to be successful despite compute times
measured in days and weeks as opposed to minutes and hours
[16, 17]. Unfortunately, our approach still does require some
burden on human resources. In our case study, we were able
to highlight 25 subsets of trajectories that were the most
common. While the generation and isolation of these 25
was automated, the process of going through the 25 subsets

to understand the vulnerabilities and secure the system is
manual. This is weakness of our approach. In future work
we will explore a means to automate this part of the process.

Related Work

There are a variety of the traditional technologies for
detecting and preventing cyber attacks and intrusions. Most
attacks start with infecting the user PC or server with
malicious code. The major technologies for detecting such
malicious code can be divided into the vaccine-based
intrusion detection, malicious network traffic monitoring-
based detection and policy driven intrusion protection and
detection. Here we review all three. Our approach differs
from these in that it models cyber threats to be proactive.
Instead of waiting to prevent an attack it automatically
generates common vulnerabilities that can be exploited
by cyber threats based on previous descriptions. This
section concludes with a review of other proactive modeling
approaches.

Detection of Vaccine-Based Attacks

The vaccine-based intrusion attack detection method
inspects the files flowing into or running in a PC or a server
to check if they contain malicious code. The vaccine detects
malicious code using the specific unique value of the already
analyzed malicious code. To create the unique characteristics
of the malicious code, the malicious behavior file must be
identifiable using the result of the analysis by a skilled
malicious code analyst. The unique value of the malicious
behavior file is then extracted and made into a signature to
be distributed to each user PC [18, 19, 20].

Vaccine-based intrusion attack detection can inspect all
known malicious code in a short period. Moreover, it
consumes only a small amount of system resources for
detection. Note, however, that it can detect malicious code
only when the malicious code used for the attack is already
known. It will not detect cases such as APT attack, which
uses unknown malicious code or attack pattern [21, 22].

Prevention of Intruding Malicious Network
Traffic

The network-based prevention of intrusion technology can
allow or prevent data similar to the specific condition. It
includes firewalls, which can analyze and prevent the data
penetrating into the network in real time [21, 23]. Using
the specific data of network traffic, intrusion attacks can be
detected and prevented. Records of outside IP, information-
leaking server IP, and anomalously connecting IP used in
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past intrusion attacks can aid in preventing the recurrence of
the same attack. Moreover, it can allow or prevent intrusion
of the specific service of the traffic to prevent unintended
access. By monitoring traffic in and out for a specific period,
it can detect anomalously created traffic [24, 22]. Like
the detection of vaccine-based intrusion attack, however,
its limitation is that it can perform prevention based only
on known attack or analyzed data. Although it can detect
unknown anomalous traffic, it can detect traffic during a short
period of 1-2 days only, but not attacks which occurs over a
long period.

Policy Driven Intrusion Protection & Detection
Systems

Policy-based prevention of intrusion technology attempts to
define the line between benign and malicious applications
as a set of rules. These rules specify what an application
is allowed to do and attempts to violate the rules are
considered intrusions. The rules governing an application
define precisely which system resources an application can
access and in what way [25]. Some approaches automate this
process by deriving application-specific system call behavior
model from the application’s source code, and checks the
application’s run-time system call pattern against this model
to thwart any control hijacking attacks [26]. Others have
moved the approach from a machine’s operating system to its
web browser. The idea is that a web site can embed a policy
in its pages that specifies which scripts are allowed to run.
The browser, which knows exactly when it will run a script,
can enforce this policy [27].

Proactive Modeling Approaches of Cyber
Threats

In recent years several proactive approaches to modeling and
detering cyber threats have been discovered. Two approaches
are similar to ours. The first reproduces real cyber attacks that
have signature performance data which can identify them.
Machine learning is used to train a classification algorithm
on the performance data resulting from the attack. The result
is a technology that has been pre-trained for a variety of cyber
attacks so that if any are attempted the resulting performance
data will be identified immediately and the privileges of the
attacking program will be revoked so that it cannot cause
any harm to the system [28]. Another approach leverages the
coevolutionary relationship between attackers and defenders
to derive a new method for proactive network defense.
The approach involves exploiting basic threat information
(e.g., from cyber security analysts) to generate synthetic

attack data for use in training defense systems. The result is
networks defenses that are effective against both current and
near future attacks [29]. Unlike, our approach the approach
does not use a formal markup language like STIX to model
cyber threats nor does it employ a Markov Chain to ensure
that the cyber threats generated are representative of the data
set of cyber threat descriptions.

Conclusion and Future Work

Traditional approaches for cyber security focus on under-
standing and addressing vulnerabilities. While this mindset
is necessary it is not sufficient. In order to make informed
defensive decisions that optimize the use of limited resource
a bettering understanding of the nature of existing and future
cyber threats is needed. By applying Markov Chain methods
we address this need. Our Markov Chain of cyber threats
ingests descriptions of the previously observed cyber threats
encoded in the description language STIX. Using the STIX
architecture of a cyber threat as a directed graph it creates
a mechanism to generate possible cyber threat trajectories
that are representative of the collected STIX descriptions.
Using analysis tools to summarize the generated threats
provides cyber defenders with the ability to identify common
themes of vulnerabilities that cyber threats can exploit. In a
case study, we explore a previously unknown cyber threat
vulnerability, characterized by indicators of two well known
cyber threats.

Our future work will focus on automating the analysis of
the data generated by our approach to inform cyber threat
intelligence and inform cyber insurance scoring. Specifically,
we will explore the extent to which insurance companies
can use are generated threats to evaluate cybersecurity risk
of current, prospective policyholders, as demand for cyber
insurance increases. Companies will be screened using our
generated threats to determine their cybersecurity risk when
they apply for insurance.
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