
INSIGHT: understanding unexpected behaviours
in agent-based simulations
R Gore* and PF Reynolds Jr

University of Virginia, VA, USA

Unexpected behaviours in simulations require explanation, so that decision-makers and subject matter experts can
separate valid behaviours from design or coding errors. Validation of unexpected behaviours requires accumulation of
insight into the behaviour and the conditions under which it arises. Agent-based simulations are known for unexpected
behaviours that emerge as the simulation executes. To facilitate user exploration, analysis, understanding and insight of
unexpected behaviours, we have developed a novel semi-automated methodology, INSIGHT. INSIGHT provides: (1)
semi-automatic hypothesis testing for exploring an unexpected behaviour, and (2) automatic identification of statements
in an agent-based simulation’s source code which have the strongest influence on an unexpected behaviour. INSIGHT is
applicable to both deterministic and stochastic agent-based simulations and extends the state of the art in agent-based
simulation analysis.
Journal of Simulation (2010) 4, 170–180. doi:10.1057/jos.2009.26; published online 27 November 2009

Keywords: simulation; methodology; computational analysis; validation; agent-based modelling; emergent behaviour

1. Introduction

Simulations have entered the mainstream of critical public

policy and research decision-making practices (Whipple,

1996; Arthur, 1999; Hooke and Pielke, 2000; Cha, 2005;

Elderd et al, 2006; National Science Foundation, 2006).

Public policy-makers and scientists look to simulation for

insight, trends and likely outcomes. Unfortunately, methods

for gaining insight into unexpected outcomes, as related to

model design and simulation implementation and use, have

not kept pace. This problem is magnified in agent-based

simulations where unexpected behaviours typically emerge

as the simulation executes. Emergent behaviours in agent-

based simulations represent the arising of novel structures,

patterns or properties during the process of self-organization

in a complex system (Corning, 2002). These emergent

behaviours may be either expected by the simulation user

or unexpected. Unexpected emergent behaviours often occur

in agent-based simulations where the simulation specifica-

tion is incomplete because the application domain is poorly

understood; the purpose of the simulation is to explore the

domain of interest (Trenouth, 1991). Writing the agent-

based simulation becomes a theory construction task where

the simulation is the expression of the theory (Wielinga,

1978). Trusted simulations, agent-based or not, in the same

application domain, data sets from physical experiments,

and subject matter expert opinions are used to test the

theory. This is what gives exploratory agent-based simula-

tions their experimental nature. Those emergent behaviours

that are not defined in the specification and do not match the

behaviour of other trusted simulations, data sets from

physical experiments or subject matter expert opinions are

unexpected behaviours. These unexpected behaviours require

understanding and explanation to determine if the behaviour

is an error or new knowledge in the application domain.

Uncertainty about unexpected agent-based simulation

behaviours has fuelled recent public policy debate (Cha,

2005). A case in point is the agent-based disease spread

simulation, Episims, which simulates nationwide spread of

the smallpox virus under various vaccination strategies

(Eubank et al, 2004). Previous studies of smallpox concluded

that a targeted vaccination strategy could manage disease

spread as well as mass vaccination of the entire population.

However, the Episims studies showed that disease spread

under a targeted vaccination strategy is much more severe

than under a mass vaccination strategy. Differences in these

predictions led to policy debate over ‘whether or not it’s

necessary to synthesize enough smallpox vaccine for the

entire country’ (Cha, 2005).

The Institute of Medicine of the National Academies has

published a collection of critical opinions of the simulation

predictions of Ep isims. The chief complaint raised is that the

simulation developers could not provide a clear explanation

for the difference between their vaccination strategy predic-

tions and those previously established (Baciu et al, 2005).

Given the increasing use of agent-based simulations in

critical decisions, a methodology that facilitates under-

standing and establishment of validity of unexpected

behaviours is needed.

*Correspondence: R Gore, 136 Hessian Hills Circle, Apt. 1, Charlottesville,
VA 22901, USA.
E-mail: rjg7v@virginia.edu

Journal of Simulation (2010) 4, 170–180 r 2010 Operational Research Society Ltd. All rights reserved. 1747-7778/10

www.palgrave-journals.com/jos/

We present a novel methodology, INSIGHT, that allows

users to understand and validate or reject unexpected agent-

based simulation behaviours efficiently and with confidence.

We note an important difference between validating a

simulation and validating an unexpected behaviour that

arises in a simulation. The former represents an effort to

demonstrate expected behaviour (Balci, 1997). The latter is a

demonstration of the validity of behaviour that was

unexpected for a given set of conditions, or experimental

frames (Zeigler et al, 2000). Validation of unexpected

behaviour requires accumulation of insight into, and under-

standing of, the behavior and the conditions under which it

arises. Then the problem, the model for it, and any related

simulation, are all reframed so that the unexpected

behaviour either becomes a part of a set of behaviours one

considers valid, or it is deemed invalid. INSIGHT combines

semi-automated hypothesis testing (SAHT), program slicing,

causal analysis and generation of program slice distribution

functions to define an end-to-end automated process for

discovering, analysing and understanding sources of

unexpected behaviours in agent-based simulations. Table 1

itemizes where these technologies appear in the INSIGHT

process and the outcomes of each.

The first component of INSIGHT is SAHT. SAHT allows

a simulation user to observe characteristics of an unexpected

behaviour as a simulated phenomenon is driven towards

conditions of interest. Owing to the complexity of agent-

based simulations where unexpected behaviours frequently

occur, the user often does not know how to drive the

simulation to conditions of interest directly. The term

condition of interest means a simulated state, or set of states,

in which a simulated phenomenon is maximized, minimized

or targeted to an exact requirement (Gore et al, 2007).

Causal Program Slicing (CPS) combines program slicing

and causal inference, in a novel manner, to provide insight

into the interactions of simulation variables and source code

statements that cause unexpected behaviour. CPS precision

suffers when a simulation includes stochastics, as most do.

As a remedy, we employ Program Slice Distribution

Functions (PSDFs) to quantify the uncertainty of dynamic

program slices. Applying PSDFs to CPS increases precision

in the CPS analysis for stochastic simulations.

Use of INSIGHT is not limited to agent-based simula-

tions. However, it is particularly useful to agent-based

simulations because of their frequent tendency to exhibit

unexpected behaviours (often regarded as a feature of agent-

based simulations) that turn out not to be easily attributed to

specific blocks of code. INSIGHT is applicable to all

simulations written in any high level programming language

(eg Java, C#, Cþþ , etc) and requires access to the

simulation source code. INSIGHT remains in development

and is unavailable for download; however, in the future we

expect to release it through open source channels to the

simulation community.

T
a
b
le

1
T
ec
h
n
o
lo
gi
es

co
m
p
ri
si
n
g
IN

S
IG

H
T

A
b
br
ev
ia
ti
o
n

D
es
cr
ip
ti
ve

n
am

e
F
un
ct
io
n

O
u
tc
o
m
e
fo
r
u
se
r

S
A
H
T

S
em

i-
a
u
to
m
a
te
d
h
y
p
o
th
es
is
te
st
in
g

E
m
p
lo
y
S
em

i-
a
u
to
m
a
te
d
m
o
d
el

a
d
a
p
ta
ti
o
n
m
et
h
o
d
s
to

fo
rc
e
a
si
m
u
la
ti
o
n
to

ex
h
ib
it
u
se
r-
d
efi
n
ed

co
n
d
it
io
n
s

o
f
in
te
re
st
.

In
cr
ea
se
d
u
se
r
co
n
fi
d
en
ce

ab
o
u
t
th
e
h
y
p
o
th
es
iz
ed

co
n
d
it
io
n
s
co
n
tr
o
ll
in
g
th
e
u
n
ex
p
ec
te
d
b
eh
a
v
io
u
r.

C
P
S

C
a
u
sa
l
p
ro
g
ra
m

si
li
ci
n
g

A
p
p
ly

p
ro
g
ra
m

sl
ic
in
g
a
n
d
ca
u
sa
l
in
fe
re
n
ce

to
p
ro
d
u
ce

q
u
a
n
ti
fi
ed

in
si
g
h
t
in
to

re
la
ti
o
n
sh
ip
s
am

o
n
g
si
m
u
la
ti
o
n

in
p
u
ts
,
va
ri
a
b
le
s
w
it
h
th
e
ex
ec
u
ti
o
n
fl
o
w

o
f
th
e

si
m
u
la
ti
o
n
a
n
d
u
n
ex
p
ec
te
d
b
eh
a
v
io
u
rs
.

W
it
h
fo
cu
s
gu

id
ed

b
y
h
y
p
o
th
es
es

re
in
fo
rc
ed

b
y

S
A
H
T
,
u
se
r
ac
q
u
ir
es

C
P
S
g
en
er
a
te
d
q
u
a
n
ti
fi
ed

ca
u
sa
l
ex
ec
u
ti
o
n
fl
o
w
s
af
fe
ct
in
g
u
n
ex
p
ec
te
d

b
eh
a
v
io
u
rs
,
th
u
s
in
cr
ea
si
n
g
u
se
r
in
si
g
h
t
in
to

ca
u
se
s

o
f
th
o
se

b
eh
a
v
io
u
rs
.

P
S
D
F

P
ro
g
ra
m

sl
ic
e
d
is
tr
ib
u
ti
o
n
fu
n
ct
io
n
s

G
en
er
at
e
d
is
tr
ib
u
ti
o
n
s
re
la
te
d
to

th
e
li
k
el
ih
o
o
d

o
f
d
if
fe
re
n
t
ex
ec
u
ti
o
n
fl
o
w
s
fo
r
sp
ec
ifi
ed

si
m
u
la
ti
o
n
in
p
u
ts
.

In
co
m
b
in
a
ti
o
n
w
it
h
C
P
S
a
n
al
y
si
s
u
se
r
g
ai
n
s
in
si
gh

t
in
to

re
la
ti
o
n
sh
ip

b
et
w
ee
n
q
u
a
n
ti
fi
ed

li
k
el
ih
o
o
d
o
f

ex
ec
u
ti
o
n
fl
o
w
s
an

d
u
n
ex
p
ec
te
d
b
eh
a
v
io
u
r.

IN
S
IG

H
T

M
et
h
o
d
o
lo
gy

fo
r
u
n
d
er
st
a
n
d
in
g

u
n
ex
p
ec
te
d
b
eh
a
v
io
u
rs

in
si
m
u
la
ti
o
n
s

S
em

i-
a
u
to
m
a
ti
ca
ll
y
in
cr
ea
se

in
si
gh

t
in
to

th
e
ca
u
se
s
o
f

u
n
ex
p
ec
te
d
b
eh
a
v
io
u
rs

in
a
si
m
u
la
ti
o
n
.

H
ig
h
er

co
n
fi
d
en
ce

ex
p
la
n
a
ti
o
n
s
fo
r
u
n
ex
p
ec
te
d

b
eh
a
v
io
u
rs
,
a
n
d
an

a
ly
si
s
p
ro
v
id
ed

b
y
IN

S
IG

H
T
.

C
o
n
fi
d
en
ce

ca
n
o
ft
en

b
e
q
u
a
n
ti
fi
ed

b
a
se
d
o
n

IN
S
IG

H
T
o
u
tp
u
ts
.

R Gore and PF Reynolds—INSIGHT 171

In the sequel, we describe the particulars of the SAHT,

CPS and PSDF methods comprising INSIGHT and we

describe an agent-based SEIR epidemic simulation where

INSIGHT has been employed for its intended purpose;

namely to provide insight into unexpected agent-based

simulation behaviours.

2. INSIGHT components

In this section we describe the component technologies that

comprise INSIGHT and offer example applications of the

components.

2.1. Semi-automated hypothesis testing (SAHT)

SAHT is a method for increasing insight into unexpected

behaviours, and supporting validation of valid unexpected

behaviours. SAHT can be used to increase confidence in

hypothesized meanings of unexpected agent-based simula-

tion behaviours. Simulation validation is not a goal, but can

be an outcome of SAHT.

A number of approaches to automatic model adaptation

contain ideas that contribute to SAHT. However, these

solutions do not address all of the needs for efficiently testing

user specified hypotheses regarding unexpected program

behaviour. Some adaptation solutions are constrained to

specific domains (Reiher et al, 2000; Chang and Karamcheti,

2001), while others operate only at the syntactic interface

level (Gschwind, 2002; Haack et al, 2002; Brogi et al, 2003).

SAHT includes both these capabilities allowing users to

create conditions of interest and modify model interfaces as

we discuss next.

The SAHT process. When testing a hypothesis about an

unexpected behaviour, a user may wish to observe the

unexpected behaviour under a specified set of target

behaviours. However, when there are non-linearities in

behaviours of an agent-based simulation, the user may not

know how to adapt the simulation to achieve the desired

target behaviours directly. We advocate the application of

semi-automated model adaptation for efficient exploration

of unexpected behaviour under specified conditions. When

constructing an agent-based simulation, abstractions in-

evitably must be selected in order to reduce complexity,

improve performance, or provide estimations for unknown

information. We call those places where a user can choose

among abstractions, abstraction opportunities. Carnahan has

developed a language, FlexML, and supporting tools for a

user to identify abstraction opportunities and alternatives

for the model abstractions (Carnahan et al, 2007).

Given an unexpected behaviour, B, a user must establish if

the unexpected behaviour B is valid or invalid. To better

understand an unexpected behaviour, a user generally needs

to formulate a hypothesis, H, about how unexpected

behaviour B will be manifested under a condition of interest,

C. Using this paradigm, the user needs to identify possible

model abstraction alternatives to search to create C. The user

can test hypothesisH, by observing the unexpected behaviour

B, under condition of interest C (Gore et al, 2007).

The FlexML tools enable alternatives for each model

abstraction to be reflected in the simulation source code as

possible alternate bindings (Carnahan et al, 2007). With

these alternate bindings, a model adaptation strategy

employing optimization becomes possible. SAHT uses our

optimization-based adaptation technology, COERCE (Rey-

nolds et al, 2007), to test user hypothesis H, about an

unexpected behaviour B, by efficiently creating user-specified

conditions of interest C. A user gathers insight by observing

an unexpected behaviour B, under the conditions of interest

C. If the observed behaviour matches the user’s hypothesis

H, it passes the test, otherwise it fails (Gore et al, 2007).

Applying semi-automatic hypothesis testing to the Dun-
ham simulation. Epidemics have been modelled mathe-

matically for over a century (Diekmann and Heersterbeek,

2000). The well-established differential equation SEIR

model of infectious disease spread is shown in Figure 1.

It is described by the system of differential equations

depicted in Figure 1 where p, q, l, g, e, and u are positive

parameters and S, E, I, and R denote the fractions of the

population that are susceptible, exposed, infectious, and

removed, respectively. Individuals are susceptible, then

exposed (in the latent period), then infectious, then

removed from the studied population. The birth rate and

death rate are assumed to be equal and denoted by u. The

transfer rates of the disease between the exposed state and

the infectious state and the infectious state and the removed

state are denoted by e and g, respectively. The rate of new

infections is described by the non-linear term lIpSq (Li and

Muldowney, 1995).

Differential equation models are only one approach to

studying disease spread. In contrast, Dunham (Dunham,

2005) has published an agent-based SEIR epidemic simula-

tion. The Dunham simulation predicts disease spread by

modelling interactions on a 2-D torus. Infectious individuals

infect susceptible individuals within a specified radius and

spread their infection with a given probability.

The results of the differential equation SEIR model and

the Dunham simulation for a population of size 100 match

closely: standard deviations of corresponding curves differ

by less than 2% of the population size. Dunham’s simulation

appears to produce valid predictions. Differences between it

Figure 1 Established differential equation SEIR model (Li and
Muldowney, 1995).

172 Journal of Simulation Vol. 4, No. 3

and accepted data or models should be investigated to

determine the model’s general validity. When we tested

Dunham’s simulation over a range of reasonable conditions

an unexpected behaviour emerged. Changing only the

population parameter from size 100 to size 1000 significantly

changes the predictions for disease spread. As shown in

Figure 2(a) Dunham’s simulation predicts a shorter,

heightened infectious period where no infected individuals

remain after day 35. In contrast, the differential equation

model shown in Figure 2(b) predicts a longer infectious

period with infectious individuals still present at day 80. The

standard deviations of the Dunham’s simulation curves from

the accepted differential equation model’s curves are at least

11% of the population size for each curve. These standard

deviations, compared to those of the population of size 100

are an order of magnitude greater. Based on examples and

claims in Dunham (2005) and the results of the models for a

population of size 100, we expected the Dunham’s simula-

tion to predict results similar to the differential equation

model. The differences represent an unexpected behaviour.

To understand why Dunham’s simulation predictions

differ so significantly for a population of size 1000, and to

determine if the behaviour is valid, we applied SAHT.

Epidemic models often include parameter(s) which represent

the rate of new infections. New infections occur in Dunham’s

simulation over time but there is no input parameter for

infection rate, and we found none published. We instru-

mented Dunham’s simulation to capture the rate of new

infections and used this to create the condition of interest C:

the rate of new infections is 8.0 per infected individual. Using

C as a target behaviour, the hypothesis H was tested: when

the rate of new infections is 8.0 in both models, their

predictions will be similar (Gore and Reynolds, 2008).

Dunham’s simulation was adapted by searching alter-

native bindings for six different abstraction opportunities to

create the condition of interest C: new infection rate¼ 8.0.

When the condition of interest, C, was achieved, Dunham’s

simulation predictions closely matched those of the differ-

ential equation based model. This is shown in Figure 3(a)

and (b). The standard deviations of Dunham’s simulation

curves from the accepted differential equation model’s

curves are less than 2% of the population size for each

curve. The hypothesis is correct: the predictions are similar

when the rate of new infections is 8.0.

SAHT hypothesis testing does not directly enable users to

understand how the rate of new infections is controlled in

Dunham’s simulation, only that it is important to the

simulation’s behaviour. To gain this insight, CPS and

Dunham's SEIR Epidemic Graph

0 10 20 30 40 50 60 70 80 90 100

Day #

0
100
200
300
400
500
600
700
800
900

a b
1,000

o

f
In

d
iv

id
u

al
s

Differential Equation Model SEIR Epidemic Graph

0 10 20 30 40 50 60 70 80 90 100

Day #

0
100
200
300
400
500
600
700
800
900

1,000

o

f
In

d
iv

id
u

al
s

Susceptible Exposed Infected Removed Susceptible Exposed Infected Removed

Figure 2 (a) and (b) Dunham’s simulation and differential equation model for population of 1000 over 100 days.

Dunham's SEIR Epidemic Graph

0 10 20 30 40 50 60 70 80 90 100

Day #

0
100
200
300
400
500
600
700
800
900

1,000

o

f
In

d
iv

id
u

al
s

Differential Equation Model SEIR Epidemic Graph

0 10 20 30 40 50 60 70 80 90 100

Day #

0
100
200
300
400
500
600
700
800
900

1,000

o

f
In

d
iv

id
u

al
s

Susceptible Exposed Infected Removed Susceptible Exposed Infected Removed

Figure 3 (a) and (b) Dunham’s simulation under condition of interest C and differential equation model for population of 1000 over
100 days.

R Gore and PF Reynolds—INSIGHT 173

PSDFs are applied to the Dunham simulation as described

in the following sections.

2.2. Causal program slicing (CPS)

CPS combines program slicing and causal inference to

provide insight into the interactions of model variables and

source code statements that cause an unexpected behaviour.

Program slicing is a decomposition technique that extracts

program statements relevant to a particular computation

within the program (Weiser, 1984). Program slices are either

static or dynamic; CPS uses only static program slicing. The

criterion for a static slice is a 2-tuple consisting of {s, v},

where v is the variable of interest and s is the line number of

the statement of interest. A static program slice contains no

assumptions about the input to a program. The CPS analysis

enabled by the use of static program slicing allows users to

focus their attention on explaining how the identified

program statements in the source code cause the unexpected

behaviour.

Sensitivity analysis and design of experiments (DoE) have

been proposed as experimental methods used to quantify

indeterminate measurements of factors and interactions

through observance of forced changes to explore the

robustness of the behaviour in an agent-based simulation

(Montgomery, 2004). These approaches have been refined to

data farming. Data farming can provide users with insight

into how agent-based simulation outputs vary in relation to

agent-based simulation input parameters (Lucas et al, 2002).

The goal of CPS is to move this analysis from the input-

output level of the simulation to the source code level where

simulation variables change state. This allows users to

understand how the variations in the input parameters

change the simulation variables in the source code and how

the state changes in the simulation variables influence

simulation behaviour. Performing this type of analysis via

causal inference (Pearl, 2000; Spirtes et al, 2001) at the

source code level of the agent-based simulation allows us to

quantify the influence of a program statement on an

unexpected behaviour.

The CPS process. CPS begins with user identification of

the state of the simulation that represents the unexpected

behaviour. The program statement in the simulation’s

source code at which this state can be observed is identified

by its line number, s. The variable storing the value of

interest related to the unexpected behaviour is identified by

the variable, v. Static program slicing is then applied using

the static slicing criterion {s, v}. The static program slice

will identify all statements in the source code containing

variables that may influence the state of the simulation

representing the unexpected behaviour. The list of state-

ments in the static program slice is passed to the CPS

preprocessor.

CPS preprocesses simulation source code and inserts

statements to capture state changes of variables in the static

program slice. The inserted code collects the value of a

variable in an identified program statement before and after

the execution of the program statement. Thus state changes

in program statement variables are mapped to simulation

source code. The collected variables’ values serve as samples

which can be analysed to determine the influence a variable’s

state has on the unexpected behaviour or the state of another

variable. Collection of values of variables as the variables

change state throughout the simulation execution, and

quantifying the influence the state changes in the variables

have on the unexpected behaviour or on each other, is

central to our work. Each of the quantified variable state

changes can be mapped back to the program statement

which caused the variable to change state. Further details on

capturing the variable state for different types of program

statements are provided in Gore and Reynolds (2009).

Once the preprocessing step is complete, the user next

identifies the set of input parameters to explore. As a part of

the CPS process, these parameters are varied to determine

how changes in the parameters change the state of the

variables in the simulation’s source code. We employ

sampling approaches with efficient and equal density cover-

age of the search space for a given number of samples.

Examples of candidate sampling approaches include Latin

Hypercube Sampling and Orthogonal Sampling (Loh, 1996;

Garcia, 2000).

The simulation is executed for each input parameter

configuration in the set. The code inserted by the CPS

preprocessor collects the samples for each state of each

variable in the static program slice as the simulation

executes. Next, the influence of a variable state on

unexpected behaviour or another variable state is quantified

by applying causal inferencing to the samples of the

variables’ states. The result is a chain of variable states

which specify how each variable state influences others, and

the unexpected simulation behaviour. The strength of a

causal influence is measured as the absolute value of the

correlation coefficient (between [0, 1] inclusive) between two

variable states. Using the correlation coefficient along

with conditional independence to measure causality is based

on previous causal inference research (Pearl, 2000; Spirtes

et al, 2001).

The user identifies the threshold causal influence a variable

state must have on the unexpected behaviour, or on another

above threshold variable state influencing the unexpected

behaviour to be included in the slice. The strength of a causal

influence lies between [0, 1] inclusive. Given a causal

influence z, z has weak or no influence if 0.0pzo0.3,

moderate influence if 0.3pzo0.5, and strong influence if

0.5pzp1 (Cohen, 1988).

Using data stored by the preprocessor, each variable state

with a causal influence that is over a user-specified threshold

is mapped back to the program statement that caused the

174 Journal of Simulation Vol. 4, No. 3

variable’s state to change. Finally, a graph of the chain of

program statements that have a causal influence on the

unexpected behaviour is displayed to the user. The graph is

annotated with the causal influence each program statement

has on unexpected program behaviour or another program

statement over threshold. The graph focuses user attention

on understanding those statements in the simulation’s source

code with the strongest causal influence on the unexpected

behaviour.

Applying CPS to an example program. To elucidate the

CPS process we apply it to the program in Figure 4(a). CPS

proceeds as follows:

1. The user identifies the value of x in line 13 as the program

state capturing the unexpected behaviour.

2. The user configures CPS to only collect those variable

states within the same function that affect the value of x

in line 13. The user also specifies a causal influence

threshold of 0.5, this is the minimum influence a

variable state must have on the value of x in line 13 or

on another variable state having an influence X0.5 on x

in line 13.

3. The causal program slicer initiates static program slicing

with the slicing criterion {13, x} to determine the program

statements that may influence the computation of x in

statement 13. These statements are shown in Figure 4(b).

4. For program statements in Figure 4(b) the preprocessor

inserts code to map the state of the variables n, i, x and

sum back to their respective program statements. The

preprocessor code also collects the state of each variable.

5. The user performs orthogonal sampling to generate 1000

different values for input parameter n, and runs the

program for each of the generated values. The values for

n range between 1 and 10 000.

6. CPS performs causal inference on the generated samples.

CPS outputs a causal graph including each variable state

with an influence X0.5 on the value of x in line 13 or on

another variable state which has a causal influence X0.5

on the value of x in line 13.

7. Each variable state in the causal graph is mapped back to

the program statement that caused the variable to change

state. A causal graph containing only the program state-

ments with the strongest causal influence on the value of x

in line 13 is output. This graph, which gives the user

insight, is shown in Figure 4(c). The initial value of n, and

the state of sum, where those integers p n are added

together have the strongest influence on the value of x in

line 13.

Imprecise CPS analysis for stochastic simulations. For

stochastic simulations, there exist different possible outputs

(or behaviours) for a fixed input. CPS cannot offer precise

analysis of stochastic simulations because CPS assumes

that for each simulation input there exists only one possible

output and that for each input there exists only one possi-

ble dynamic program slice to be executed. A dynamic slice

extracts program statements relevant to a particular com-

putation within the program for a specified input (Weiser,

1984). A dynamic program slicing criterion consists of

{input, line number of statement s, name of variable v} (Tip,

1995). Precision is measured by the number of dynamic

slices for a fixed input provided by the analysis divided by

the number of possible dynamic slices for a fixed input (Van

der Walt and Barnard, 2006). The first CPS assumption is

never true for stochastic simulations and often the second

CPS assumption is not true either.

Figure 5(a)–(c) elucidate the imprecision in CPS analysis

of stochastic simulations. From the user’s point of view the

behaviour of the example program in Figure 5(a) is

stochastic. Figure 5(b) and (c) show the two possible

dynamic program slices using criterion {n¼ 13, 7, x} for

the program in Figure 5(a). Figure 5(b) shows the dynamic

1 read(n);
2 i := 1;
3 x := 0;
4 sum := 0;
5 average := 0;
6 while i<= n
7 sum := sum + i;
8 i := i + 1;
9 end
10 if (sum mod n == 0)
11 x := 1;
 else
12 x := sum;
13 print (x);
14 average := sum/n;
15 print (average);

1 read(n);
2 i := 1;
3 x := 0;
4 sum := 0;

6 while i<= n
7 sum := sum + i;
8 i := i + 1;
9 end
10 if (sum mod n == 0)
11 x := 1;
 else
12 x := sum;
13 print (x);

1 read(n);

6 while i<= n
7 sum := sum + i;

9 end

10 if (sum mod n == 0)
11 x := 1;
 else
12 x := sum;

13 print (x);

.9689

.6009

1.000

Figure 4 (a) A simple program; (b) a program slice using static slicing criterion {13, x}. (c) A causal program slice using criterion
{13, x} and a threshold of 0.5.

R Gore and PF Reynolds—INSIGHT 175

program slice, when the random number generator does not

generate a number between 0.998 and 0.999. Figure 5(c)

shows the dynamic program slice when the random number

generator does generate a random number between 0.998

and 0.999. Assuming a uniform random number generator,

the dynamic program slice for the program in Figure 5(a) is

the one shown in Figure 5(b) approximately 99.9% of the

time and the one shown in Figure 5(c) 0.1% of the time.

CPS cannot provide precise analysis for the program in

Figure 5(a) for both a single input value of n, and for several

values of n. The program state representing the unexpected

behaviour of the program in Figure 5(a) is the value of x at

line 7. CPS cannot precisely capture this behaviour because

for some executions of the program, with input value 13,

CPS will collect the state of the variable x after the execution

of lines 2 and 6, but for the other execution CPS will collect

the state of the variable x after the execution of lines 2 and 5.

Furthermore, for the cases where CPS collects the state of

the variable x after the execution of lines 2 and 5, the value

of variable x will vary based on the value of r and. In order

for the CPS analysis to become more precise samples of the

different possible variable states from each possible dynamic

program slice in the program are required. Next, we discuss

how PSDFs achieve this functionality.

2.3 Program slice distribution functions (PSDFs)

Our approach involves application of Monte Carlo sampling

to the different possible dynamic program slices for a

stochastic simulation and the different possible values of

variable states within each possible dynamic program slice

given a fixed input (Berg, 2004).

Generating and applying PSDFs to enable precise CPS
analysis. The method for generating PSDFs and applying

them to CPS proceeds as follows:

1. The user identifies the unexpected behaviour in the

stochastic simulation with the static program slicing

criterion that captures the program state of the un-

expected behaviour. The user also specifies the causal

influence threshold for the slice.

2. Using the static slicing criterion the stochastic simulation

is preprocessed, as it is in traditional CPS.

3. The user specifies the different inputs of interest for which

she/he wishes to analyse the unexpected behaviour. The

user also specifies, n, the number of times to execute the

simulation for each input.

4. Each input of interest is combined with the static slicing

criterion. This forms a dynamic slicing criterion for each

input of interest.

5. For each dynamic slicing criterion the stochastic simula-

tion is executed n times to generate a PSDF.

(a) For each execution the dynamic program slice is

grouped with the dynamic program slice it matches

exactly. If no such dynamic program slice exists, a

new group is formed. Two dynamic program slices

A and B match exactly if and only if they execute the

same statements in the same order. Variable state

data that accompanies a dynamic program slice does

not play a role in the matching process.

(b) The variable states within the dynamic program slice

are stored along with the program statements that

caused the changes in variable state. The result of

Steps 5(a) and (b) is a probability distribution of the

dynamic program slices and variable states within

the dynamic program slices given the slicing criterion.

6. The user specifies the number of times, k, to sample each

PSDF.

7. Each PSDF is sampled k times. Each sample from a

PSDF requires two steps.

(a) First, a dynamic program slice group is chosen from

a uniform random distribution over all the different

dynamic program slice groups within a PSDF.

(b) Within the chosen dynamic program slice group, a

variable state data sample is picked from a uniform

random distribution over all the variable state data

samples for the identified dynamic program slice

group. The variable state data sample is added to the

CPS data set.

8. Once all PSDFs are sampled k times the CPS data set is

formed, and traditional CPS analysis is performed on the

data set.

1 read(n);
2 x = 0;
3 rand := randomNumber(0, 1);
// (rand >= .998 &&
// rand <= .999) == true
5 x := rand + n;

7 print (x);

1 read(n);
2 x = 0;

// (rand >= .998 &&
// rand <= .999) == false

6 x := n;
7 print (x);

1 read(n);
2 x = 0;
3 rand := randomNumber(0, 1);
4 if (rand >= .998 &&
 rand <= .999)
5 x := rand + n;

else
6 x := n;
7 print (x);

Figure 5 (a) A stochastic program; (b) one possible dynamic slice of the program using criterion {n¼ 13,7,x}. (c) Another possible
dynamic slice of the program using the same criterion.

176 Journal of Simulation Vol. 4, No. 3

Figure 6 The causal program slice with threshold 0.5 with respect to line number 762, the computation of the rate of new infections
in Dunham’s simulation.

R Gore and PF Reynolds—INSIGHT 177

This strategy balances the probability that a variable state

affects the unexpected behaviour with the influence of the

variable state, when it does affect the behaviour.

Applying precise CPS analysis to the Dunham simula-
tion. To evaluate the more precise CPS analysis enabled

by PSDFs we explored the previously described unexpected

behaviour in the Dunham simulation shown in Figure 2(a)

and (b). Recall, applying SAHT did not enable users to

understand which input parameters influence the unex-

pected behaviour, how those input parameters cause state

changes in variables in the simulation’s source code, and

how the state changes in those variables control the rate of

new infections in Dunham’s simulation.

CPS reveals which statements in the simulation source

code, beginning with input parameters, have the strongest

influence on the rate of new infection in the Dunham

simulation. Line 762 captures the program state of interest

for the unexpected behaviour. Figure 6 is the result of

applying CPS with a causal influence threshold of 0.5. The

function containing line number 762 comprises 91 lines of

source code. Applying static program slicing to the program

state representing the unexpected behaviour, the computa-

tion of new infection rate in line number 762, reduces the

number of statements in the source code that influence the

unexpected behaviour to 68. Applying precise CPS with a

causal influence threshold of 0.5 to the computation of the

new infection rate in line number 762 reduces the number of

statements to seven!

Figure 6 also shows that the call to step (line number 715)

in the conditional loop statement changes the simulation

state. This call has a strong causal influence on the new

infection rate in the simulation. The call to getNewInfs()

uses the state change of model caused by step to change the

state of newInfs. To better understand the influence of the

variable states and program statements in the function step

on the new infection rate, we apply CPS again to each

function.

Figure 7 shows the state changes that occur in the step

function that influence the rate of new infection in the

simulation. The only program statements with a strong

influence on the rate of new infection in the step function are

public void step()
{
 for(int h = 0 ; h < humans.size() ; h++)
 {

for(int i = 0 ; i < humans.size() ; i++)
{

if(withinInfectionDistance(humans.get(h), humans.get(h).agentLocation,
 humans.get(i), humans.get(i).agentLocation))

{
if (humans.get(h).isInf() == true)
{

if (random.nextDouble <= this.getProbOfInf())
{

if(humans.get(i).isSus())
{

humans.get(i).setSus(false);

humans.get(i).setExp(true);

}
}

}
}

}
 if ((humans.get(h).isExp()) && (humans.get(h).getExpCounter() >=

 humans.get(h).getExpLength()))
 {

 humans.get(h).setExp(false);

 humans.get(h).setInf(true);

 this.setNewInfs(this.getNewInfs() + 1);
 }
 }
}

Line Number 304

Line Number 308

Line Number 316

Line Number 319

Line Number 321

Line Number 323

Line Number 325

Line Number 328

Line Number 337

Line Number 335

Line Number 336

1.0

Line Number 329

1.0

Line Number 338

1.0

.5103

.6831

Figure 7 The causal program slice with a threshold of 0.5 for the function step with respect to line number 715.

178 Journal of Simulation Vol. 4, No. 3

contained in several nested conditional control flow state-

ments within a conditional loop statement. We discuss

several of the conditional control flow statements further.

Line 319 establishes whether an agent (humans.get(i))

is within the infection radius of the current agent

(humans.get(h)). Here, the effect of the input parameters

WIDTH and HEIGHT on the rate of new infection is

revealed. Lower values for the input parameters WIDTH

and HEIGHT create a smaller torus, which is more densely

packed with agents. As a result more agents fall within the

infection radius of infected agents. This causes the rate of

new infections to rise in the simulation. Thus, the unexpected

behaviour we observed in Figure 2 (a) and (b) is explained.

The Dunham simulation predicts a more intense infectious

period of SEIR disease spread because the 2-D torus

becomes more densely packed with agents when the

population is changed from 100 to 1000.

The CPS in Figure 7 also reveals the effect of the input

parameter PROB_OF_INF on the rate of new infection.

PROB_OF_INF specifies the probability an infected agent

spreads the disease to an agent within the specified infection

radius. A lower PROB_OF_INF results in fewer agents

becoming immediately exposed. As a result fewer agents

become infected in later time steps leading to a lower rate of

new infection. Conversely, a higher PROB_OF_INF results

in more agents becoming immediately exposed. Thus, more

agents become infected leading to a higher rate of new

infection.

The ability to identify the changes in variable state that

have the strongest influence on the rate of new infection, and

to associate those changes with program statements that

cause them, allows us to understand how the width of the 2-

D torus, height of the 2-D torus and probability of spreading

infection parameters cause the source code to compute the

rate of new infection in the agent-based simulation. PSDFs

enabled CPS to perform this analysis more precisely than

traditional CPS. The more precise CPS analysis sampled

different dynamic program slices for each set of input

parameters and different values of variable states within each

dynamic program slice.

3. Conclusion

When an unexpected behaviour is first observed in an agent-

based simulation, the prospect of explaining and then either

validating or eradicating that behaviour can be daunting.

Most users apply classic debugging techniques to identify

program statements that cause agents to create the

unexpected behaviour. Subsequently an explanation for the

behaviour is formed, code is modified and the user iterates

this process until satisfied. The process is manual and time-

consuming. INSIGHT automates this process with a

cohesive methodology built on SAHT, CPS and PSDFs.

In this process of hypothesizing, experimenting and

drawing causal conclusions, SAHT addresses the hypothe-

sizing step. By supporting iterative exploration of user

defined conditions of interest, SAHT enables discovery of

those conditions that have high correlation with an

unexpected behaviour. Even with a viable set of hypotheses

about origins of unexpected behaviours, the effort required

to identify the causative relationships between conditions of

interest and unexpected behaviours can be overwhelming

without automated support. CPS and PSDF support

transition from a viable set of hypotheses to quantified

explanations for unexpected behaviours in agent-based

simulations by revealing how pieces of the simulation source

code causally influence the user identified conditions

correlated with the unexpected behaviour.

INSIGHT has extended the state of the art for facilitating

user understanding of unexpected agent-based simulation

behaviour. While INSIGHT is not limited to agent-based

simulations, it is particularly useful for them because of their

frequent tendency to exhibit unexpected behaviours that

cannot be directly attributed to specific blocks of code.

INSIGHT can be used to provide insight for any simulation

where the user is uncertain of the validity of a particular

simulation behaviour. We see the broader applicability of

INSIGHT as beneficial to the general simulation community

because we expect broader interest to lead to higher quality

tools for all.

References

Arthur W (1999). Complexity and the economy. Science 284: 107–109.
Baciu A, Anason A, Stratton K and Strom B (2005). The

Smallpox Vaccination Program: Public Health in an Age of
Terrorism. Institute of Medicine of the National Academies:
Washington, DC.

Balci O (1997). Principles of simulation model validation, verifica-
tion, and testing. Trans Soc Comput Simulat 14: 3–12.

Berg A (2004). Markov Chain Monte Carlo Simulations and Their
Statistical Analysis: With Web-based Fortran Code. World
Scientific Press: London.

Brogi A, Canal C and Pimentel E (2003). Behavioural types
and component adaptation. In: Rattray C, Maharaj S and
Shankland C (eds). Proceedings of 10th International Conference
on Algebraic Methodology and Software Technology. Springer
Berlin: Heidelberg, pp 42–56.

Carnahan J et al (2007). Using flexible points in a developing
simulation of selective dissolution in alloys. In: Herderson S,
Biller B, Hsieh M, Shortle J, Tew J and Barton R (eds).
Proceedings of the 2007 Winter Simulation Conference. Institute of
Electrical and Electronic Engineering: Piscataway, pp 891–899.

Cha A (2005). Computers simulate terrorism’s extremes. In: Bennett
P, Coleman M and Downie L (eds). Washington Post, 4 July
2005 Washington Post: Washington, D.C, p A1.

Chang F and Karamcheti V (2001). A framework for automatic
adaptation of tunable distributed applications. Cluster Comput
4(1): 49–62.

Cohen J (1988). Statistical Power Analysis for the Behavioral
Sciences. L. E. Associates: Philadelphia.

R Gore and PF Reynolds—INSIGHT 179

Corning P (2002). The re-emergence of ‘emergence’: A venerable
concept in search of a theory. J Complexity 7(6): 18–30.

Diekmann O and Heersterbeek J (2000). Mathematical Epidemiology
of Infectious Diseases. Wiley: New York City.

Dunham J (2005). An agent-based spatially explicit epidemiological
model in MASON. J Artif Soc Soc Simulat 9(1): 3.

Elderd B, Dukic V and Dwyer G (2006). Uncertainty in
predictions of disease spread and public health responses to
bioterrorism and emerging diseases. Proc Natl Acad Sci 103(42):
15693–15697.

Eubank S et al (2004). Modeling disease outbreaks in realistic urban
social networks. Nature 2541(249): 180–184.

Garcia A (2000). Orthogonal sampling formulas: A unified
approach. SIAM Rev 42: 499–512.

Gore R and Reynolds P (2008). Applying causal inference to
understand emergent behavior. In: Mason S, Hill R, Moench L
and Rose O (eds). Proceedings of the 2008 Winter Simulation
Conference. Institute of Electrical and Electronic Engineering:
Piscataway, pp 712–721.

Gore R and Reynolds P (2009). Causal program slicing. In:
Reynolds P (ed) Parallel Distr Simulat 2009. Society for
Modeling and Simulation International: San Diego, pp 19–26.

Gore R, Reynolds P, Tang L and Brogan D (2007). Explanation
exploration: Exploring emergent behavior. In: Perumalla K (ed)
Parallel Distr Simulat 2007. Society for Modeling and Simula-
tion International: San Diego, pp 113–122.

Gschwind T (2002). Adaptation and composition techniques for
component-based software engineering PhD thesis, Technischen
Universiẗat Wien.

Haack C, Howard B, Stoughton A and Wells J (2002). Fully
automatic adaptation of software components based on
semantic specifications. In: Kirchner H and Ringeissen C
(eds). Proceedings of the 9th International Conference on
Algebraic Methodology and Software Technology. Springer
Berlin: Heidelberg, pp 83–98.

Hooke W and Pielke R (2000). Prediction: Science,
Decision Making, and the Future of Nature. Island Press:
Washington, D.C.

Li M and Muldowney J (1995). Global stability for the SEIR
model in epidemiology. Math Biosci 125(2): 155–164.

Loh W (1996). On Latin hypercube sampling. Ann Stat 24(5):
2058–2080.

Lucas T, Sanchez S, Brown L and Vinyard W (2002). Better designs
for high-dimensional explorations of distillations. In: Horne G

and Johnson S (eds). Proceedings of Maneuver Warfare Science
2002. United States Marine Corps Project Albert: Quantico.

Montgomery D (2004). Design and Analysis of Experiments 6th edn,
Wiley & Sons: Indianapolis, IN.

National Science Foundation (2006). Simulation-based engineering
science: Revolutionizing engineering science through simulation
Report of the NSF Blue Ribbon Panel on Simulation-Based
Engineering Science.

Pearl J (2000). Causality: Models, Reasoning, and Inference.
Cambridge University Press: Cambridge.

Reiher P, Guy R, Yarvis M and Rudenko A (2000). Automated
planning for open architectures. In: Hutchinson D (ed)
Proceedings of the Third IEEE Conference on Open Architectures
and Network Programming. Institute of Electrical and Electronic
Engineering: Piscataway, pp 17–20.

Reynolds P, Spiegel M, Liu X and Gore R (2007). Validating
Evolving Simulations in COERCE. Lect Notes Comput Sc 4487:
1238–1245.

Spirtes P, Glymour C and Scheines R (2001). Causation, Prediction,
and Search. Springer Verlag: New York City.

Tip F (1995). A survey of program slicing techniques. J Program
Lang 3(3): 121–189.

Trenouth J (1991). A survey of exploratory software. Comput J
34(2): 153–163.

Van der Walt C and Barnard E (2006). Data characteristics that
determine classifier performance. In: Louw A, Kleynhans N and
Zulu N (eds). Proceedings of the 17th Annual Symposium of the
Pattern Recognition Association of South Africa. International
Association for Pattern Recognition: Durham, pp 160–165.

Wielinga B (1978). AI programming methodology. In: Sleeman, D
(ed). Proceedings of the Artificial Intelligence and Simulation of
Behavior Conference. Society for the Study of Artificial
Intelligence and Simulation of Behavior: Brighton, pp 355–374.

Weiser M (1984). Program slicing. IEEE Trans Software Eng 10(4):
352–357.

Whipple C (1996). Can nuclear waste be stored safely at yucca
mountain? Sci Am 274(6): 72–79.

Zeigler B, Praehofer H and Kim T (2000). Theory of Modeling and
Simulation 2nd edn, Academic Press: Burlington.

Received 9 March 2009;
accepted 10 May 2009 after two revisions

180 Journal of Simulation Vol. 4, No. 3

	INSIGHT: understanding unexpected behaviours in agent-based simulations
	1. Introduction
	2. INSIGHT components
	2.1. Semi-automated hypothesis testing (SAHT)
	The SAHT process
	Applying semi-automatic hypothesis testing to the Dunham simulation

	2.2. Causal program slicing (CPS)
	The CPS process
	Applying CPS to an example program
	Imprecise CPS analysis for stochastic simulations

	2.3 Program slice distribution functions (PSDFs)
	Generating and applying PSDFs to enable precise CPS analysis
	Applying precise CPS analysis to the Dunham simulation

	3. Conclusion
	References

