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Abstract—Traditional debugging and fault localization 
methods have addressed localization of sources of software 
failures. While these methods are effective in general, they are 
not tailored to an important class of software, including 
simulations and computational models, which employ floating-
point computations and continuous stochastic distributions to 
represent, or support evaluation of, an underlying model. To 
address this shortcoming, we introduce elastic predicates, a novel 
approach to predicate-based statistical debugging. Elastic 
predicates introduce profiling of values assigned to variables 
within a failing program. These elastic predicates are better 
predictors of software failure than the static and uniform 
predicates used in existing techniques such as Cooperative Bug 
Isolation (CBI). We present experimental results for established 
fault localization benchmarks and widely used simulations that 
show improved effectiveness. 
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I.  INTRODUCTION 
Our interest is in exploratory software. Exploratory 

software comprises simulations, computational models and 
other software deployed to gather insight into uncertainties in 
an underlying model. These uncertainties are often reflected 
through stochastic distributions, and the floating-point 
computations that generally accompany them. Predictions 
based on exploratory software outcomes have entered the 
mainstream of critical public policy and research decision-
making practices, affecting large numbers of people and 
valuable resources.  

Unfortunately subject matter experts (SMEs) can struggle 
with the resolution of unexpected exploratory software 
outcomes. Unexpected outcomes can reflect new knowledge 
about the underlying model, or a fault. Currently there is no 
known automated analysis method for separating them. These 
challenges represent the basis of our motivation. Separating 
unexpected valid exploratory software outcomes from failures 
is an interesting, difficult problem. We have not solved it. 
However, our predicate-based statistical debugger, Exploratory 
Software Predictor (ESP), does localize sources of unexpected 
outcomes effectively in established fault localization 
benchmarks and widely used simulations with elastic 
predicates. ESP and elastic predicates are novel, and extend the 
domain of programs for which fault localization analysis has 

been shown to be effective. They are explained further in the 
remainder of this paper. 

II. ELASTIC PREDICATES AND ESP 
ESP is a predicate-based statistical debugging approach 

focused on identifying single or multiple sources of unexpected 
outcomes in exploratory software. Predicate-based statistical 
debugging represents a class of fault localization techniques 
that share a common structure. Each consists of a set of 
conditional propositions, or predicates, inserted into a failing 
program and tested at particular program points. The predicates 
are given an importance score based on how frequently they 
are true in passing and failing test cases, ranked and provided 
to SMEs to assist in finding and fixing faults. 

In the canonical predicate-based statistical debugger 
Cooperative Bug Isolation (CBI), three predicates are tested for 
each assignment statement to, or return of, a variable x: (x>0), 
(x=0) and (x<0) [1]. These predicates are uniform and static. 
They are uniform in the sense that for each assignment to, or 
return of, a variable x, the same set of conditional propositions 
partition the values of x in the same manner. The predicates are 
static because each conditional proposition is determined 
before the execution of the program; the predicates do not 
change based on dynamic analysis of the values of variable x. 
Within ESP these three static and uniform predicates are 
complemented with elastic predicates. Elastic predicates use 
dynamic analysis to compute the mean, 

€ 

µx , and standard 
deviation, 

€ 

σx , of the values assigned to, or returned from, a 
variable x.  

Computing elastic predicates in ESP is a two-step process. 
First, as ESP executes test cases, the mean, 

€ 

µx , and standard 
deviation, 

€ 

σx , for an assignment to, or return of, a variable x 
are computed using online algorithms requiring constant space. 
Once all test cases are executed, each 

€ 

µx  and 

€ 

σx  is stored. 
Then, each 

€ 

µx  and 

€ 

σx  is used to insert nine elastic predicates 
at each statement or return. These predicates partition the 
values for an instrumented program point for three standard 
deviations above and below 

€ 

µx . They are defined below, 
where i = 0, 1, 2. 

• 

€ 

x < µx − 3σ x( )  and 

€ 

x > µx + 3σ x( )  
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• 

€ 

µx = x  

• 

€ 

µx − (i +1)σ x( ) ≤ x < µx − (iσ x )( )  and 

€ 

µx + iσ x( ) < x ≤ µx + (i +1)σ x( )  

In the second step, the test cases are re-executed and the 
inserted predicates are assigned importance scores. Subsection 
A describes scoring further. Subsection B presents an example 
where elastic predicates are employed. 

A. Importance Scores 
The extent to which a predicate predicts program failure is 

measured through an importance score. Both elastic predicates 
and uniform and static predicates require two data structures 
for each executed test case to compute an importance score: a 
one bit feedback report, R, indicating if the test case passed or 
failed and a vector V with a one bit entry for each predicate. 
Within V, each entry indicates if the corresponding predicate is 
observed to be true during test case execution. The data for 
predicate p from each feedback report R and each 
corresponding V is aggregated into these measures to account 
for specificity (also called precision) and sensitivity (also called 
recall) [1]: 

1. S(p obs) and F(p obs) - the number of successful 
and failed test cases where p was evaluated. 

2. S(p) and F(p) - the number of successful and failed 
test cases where p was evaluated and was true. 

Increase uses these measures to estimate specificity. This 
estimate accounts for the amount that p being true increases the 
probability of failure, over reaching where p is evaluated. 

€ 

Increase(p) =
F(p)

S(p) + F(p)
+

F(p obs)
S(p obs) + F(p obs)

 (1) 

Sensitivity is estimated by the quantity: 
log(F(p))/log(totalFailed). totalFailed is the number of failing 
test cases. This estimate accounts for the number of failing test 
cases in which a predicate is observed. The importance score 
for a predicate p combines sensitivity and specificity. 

€ 

Importance(p) =
2

1
Increase(p)

+
1

log(F(p)) log(totalFailed)

 (2) 

B. BC Example: Elastic vs. Static and Uniform Predicates 
Fig. 1 shows the more_arrays() function in the 1.06 

version of BC, a basic command-line calculator tool [2]. The 
more_arrays() function is responsible for increasing the 
number of arrays needed for computing. Line 167 allocates a 
larger chunk of memory. Line 171 is the top of a loop that 
copies values over from the old, smaller array. Line 176 
completes the resize by zeroing out the extra space. However, 
there is a fault. The allocation on line 167 requests space for 
a_count items. The copying loop on line 171 ranges from 1 
through old_count - 1. The zeroing loop on line 176 
continues from old_count through v_count - 1. Here, the 
new storage buffer has room for a_count elements, but the 

second loop is incorrectly bound by v_count, so when 
v_count > a_count the program fails. The three static and 
uniform predicates employed in CBI do not make the fault easy 
to discern. Most values assigned to the variables in 
more_arrays() are greater than zero, and satisfy the same 
predicate, (x>0). This predicate does not closely match where 
the fault is expressed, yielding a low importance score. 
However, the elastic predicate, indx > 

€ 

µ + 3σ , yields a high 
importance score because it clusters together unusually large 
values for indx. The predicate captures the fault: when the 
input to BC defines an unusually large number of arrays, the 
program fails. [1]. 

152 
153 
154 
155 
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

void
more_arrays()
{
  int indx;
  int old_count;
  bc_var_array **old_ary;
  char **old_names;

  /* Save the old values. */
  old_count = a_count;
  old_ary = arrays;
  old_names = a_names;

  /* Increment by a fixed amount and allocate. */
  a_count += STORE_INCR;
  arrays = (bc_var_array **) bc_malloc (a_count*sizeof(bc_var..
  a_names = (char **) bc_malloc (a_count*sizeof(char *));

  /* Copy the old arrays. */
  for (indx =1; indx < old_count; indx++)
    arrays[indx] = old_ary[indx];

  /* Initialize the new elements. */
  for (; indx < v_count; indx++)
    arrays[indx] = NULL;

  /* Free the old elements. */
  if (old_count != 0)
    {
      free (old_ary);
      free (old_names);
    }
} 

 

Figure 1.  The souce code of the more_arrays() function in BC. 

III. EVALUATION 

A. Experimental Setup 
The utility of a fault localization technique is determined 

through experimental evaluation. In our evaluation, we employ 
(1) a set of widely used simulations which make extensive use 
of stochastics and floating point computations and (2) a subset 
of the Siemens Benchmark Suite [3]. The included Siemens 
benchmarks are: tcas, totinfo, schedule and schedule2. 
These were chosen because (1) they contain a large amount of 
floating-point computations or (2) are a simulation. The 
Siemens benchmarks test ESP’s effectiveness with well-known 
applications in the fault localization community. However, the 
widely used simulations better reflect our target application 
domain due to their larger size and extensive use of stochastics 
and floating-point computations. The evaluation includes the 
following ranking approaches: 

ESP. ESP ranks statements by the following: 

1. For each statement identify the corresponding 
predicate with the highest importance score and 
move the statement and importance score to set ST. 

2. Rank the statements in ST by importance score. 
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OPT. OPT generates elastic predicates yielding the 
maximum importance score at each program point. While OPT 
is infeasible in practice it serves as the upper bound of 
effectiveness from an elastic predicate-based approach.  

CBI. CBI uses the three static and uniform predicates 
previously described. To ensure fairness CBI is extended to 
consider floating-point type variables. It uses ESP ranking. 

Tarantula. Tarantula ranks statements according to the 
suspiciousness (susp) of a statement s [5]: 

€ 

susp(s) =
failed(s)

( failed(s) totalFailed) + (passed(s) totalPassed)
 (3) 

Here, failed(s) and passed(s) represent the number of 
failing and passing executions including s. totalFailed and 
totalPassed are the total number of respective executions. 

IVMP. Interesting Value Map Pairs (IVMP) ranks each 
statement based on the number of failing executions where a 
state alteration creates a passing execution [4]. The Tarantula 
ranking system is used to break ties. 

B. Widely Used Simulations 
We conducted effectiveness experiments for the widely 

used simulations shown in Table I. Here we describe each 
simulation. Due to the size and complexity of the simulations 
OPT is not included in this portion of the evaluation. The Bates 
stochastic volatility jump-diffusion pricing model [6] must be 
calibrated to previous data before it is employed to make price 
predictions for the future [7]. The model produces an 
unexpected outcome when relative price error of previous 
data, is minimized during calibration, instead of the absolute 
price error. The Heston stochastic volatility model [8] is used 
here to reflect documented issues in the implementation of the 
logarithm function for complex numbers [9]. The pricing 
model of European Barrier Options contains a known error in 
computation of bank offering rates [10]. The um-olsr protocol 
used with the ns2 network simulator contains a documented 
error in the degree method [11]. In the 2.19b version of the ns2 
network simulator, there is a fault, which can incorrectly track 
the number of nodes in the network [12, 13]. We also seed 
faults in three queueing simulations built from a widely used 
simulator [14]. The first is a G/G/1 simulation employing a 
normal distribution when a hump-shaped distribution with 
values strictly greater than zero is intended. The second is a 
M/M/c simulation with a Poisson distribution implemented 
incorrectly. The third is a MMPP/D/1 simulation with an 
incorrectly bound loop.  

For each simulation and approach, the rank of the statement 
containing the fault is shown in Table I. The best rank for each 
simulation is bolded. The table shows that ESP is capable of 
significant improvements, at times approaching an order or 
magnitude improvement. However for these simulations, 
IVMP performs poorly because of: (1) floating-point output 
and (2) the extensive use of stochastics within several 
simulations. The first factor is evident in all the simulations. 
For programs with floating-point output it is difficult for IVMP 
to perform state alterations that cause a failing test case to pass. 
This is due to the level of precision in the floating-point 

computations that generate the simulation output. Thus, the 
approach echoes Tarantula’s rankings for most statements [4]. 

The second factor is evident for the simulations that make 
the most use of stochastic distributions – MC Euro, G/G/1 and 
M/M/c. In these simulations it is most likely that a test case 
will pass one time it is executed and fail another time. We 
hypothesize that these cases affect the analysis capabilities of a 
state altering approach like IVMP. To test this we fixed a seed 
for each of the stochastic distributions used in the three 
simulations. Given a fixed seed, IVMP is ~2x as effective. 
However, fixing a seed still does not make IVMP outperform 
ESP, and it limits the utility of the simulation to a SME. 

TABLE I.  EFFECTIVENESS RESULTS (BOLD SCORES ARE BEST) 

Name ESP CBI IVMP Tarantula 

Bates 3 56 42 78 

Heston 1 16 68 144 

MC Euro 5 38 35 45 

um-olsr 23 196 87 268 

ns2 v2.19b 21 107 145 241 

G/G/1 1 1 296 314 

M/M/c 12 68 157 157 

MMPP/D/1 13 96 64 213 

 

C. Siemens Suite Benchmarks 
Next, we evaluate the approaches using the Siemens 

Benchmark Suite. We assign a score to each set of statements 
that is the percentage of executed statements that need not be 
examined. Given a ranked list of statements S, with the faulty 
statement at rank r, the score is: score(S) = (|S|-r)/|S| * 100. Fig. 
2 shows our results. The x-axis represents the lower bound of 
each score range, and the y-axis represents the percentage of 
versions with a score greater than the lower bound. 

 

Figure 2.  Ranking approaches for the Siemens Benchmark Suite. 
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ESP vs. CBI. ESP outperforms CBI. This is to be expected, 
ESP offers the same predicates as CBI along with the nine 
elastic predicates resulting in a better tool for identifying 
predicates with high importance scores. Higher importance 
scores leads to more effective fault localization. 

ESP vs. OPT. OPT and ESP perform similarly for the 
tcas, sched and sched2 benchmarks. However, for totinfo 
OPT achieved a score of 85% or higher 19 times while ESP 
only did so 12 times. ESP’s performance against OPT is 
encouraging. While ESP offered similar effectiveness for three 
of the four benchmarks, the better elastic predicates in OPT 
enable even further improvements for programs with large 
amounts of floating-point computations like totinfo. 

ESP vs. Tarantula. Tarantula is not as effective as ESP for 
the Siemens Benchmark Suite. Tarantula is the only technique 
in our evaluation that does not consider variable values. This 
limits the effectiveness of Tarantula but makes it the most 
efficient technique evaluated. 

ESP vs. IVMP. IVMP performs better than ESP for tcas, 
sched and sched2. In these programs IVMP had a score of 
90% or higher 40 times while ESP only had such a score 32 
times. However, ESP performed well for the totinfo 
program, which frequently employs floating-point 
computations, and IVMP did not. Within totinfo it is very 
difficult for IVMP to perform state alterations that cause a 
failing test case to pass. Recall, that this difficulty is due to the 
level of precision in the floating-point computations that 
generate the program’s output [4]. As a result, IVMP performs 
the same as or worse than Tarantula for 15 of the 23 versions of 
totinfo. 

IV. RELATED WORK 
Existing statistical fault localization techniques come the 

closest to addressing our need of analyzing exploratory 
software outcomes. Tarantula [5] and CBI [1] are described in 
Section 3. SOBER [15] uses the concept of evaluation bias to 
express the probability that a predicate is true in an execution. 
BARINEL pairs abstractions of program traces with Bayesian 
reasoning [16]. Within different techniques, different metrics 
are employed to rank statements: importance [1], increase [1], 

€ 

F1  measure  [17], Tarantula’s suspiciousness [5], capture 
propagation [18] and the Ochiai metric [17, 18]. The 
effectiveness of each of these can be improved when the 
ranking metric is integrated with a cause-effect metric [17]. 
Additional enhancements exist. CBI can employ compound 
Boolean expressions to improve effectiveness and adaptive 
sampling can improve efficiency [19, 20]. Paths (serving as 
informal elastic predicates) can be used instead of predicates to 
offer improved effectiveness [21]. Short-circuit rules in the 
evaluation of Boolean expressions can also improve 
effectiveness [22]. Santelices et al. show that integrated results 
with various program entities can offer improvements in 
effectiveness over using any single program entity [23]. 

V. CONCLUSION 
SMEs can struggle for decades with separating valid, but 

unexpected, exploratory software outcomes from failures. This 

remains an open problem. However, we have developed a 
statistical debugger, ESP, which localizes sources of 
unexpected outcomes. ESP complements the predicates used in 
existing approaches with elastic predicates to improve 
effectiveness. ESP outperforms the best alternatives in widely 
used simulations and performs as well as the best alternative 
for established benchmarks. 
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