
Statistical Debugging with Elastic Predicates

Ross Gore, Paul F. Reynolds, Jr.
Dept. of Computer Science

University of Virginia
Charlottesville, USA

{rjg7v,pfr}@virginia.edu

 David Kamensky
Institute of Computational Engineering and Sciences

University of Texas at Austin
Austin, USA

kamensky@ices.utexas.edu

Abstract—Traditional debugging and fault localization
methods have addressed localization of sources of software
failures. While these methods are effective in general, they are
not tailored to an important class of software, including
simulations and computational models, which employ floating-
point computations and continuous stochastic distributions to
represent, or support evaluation of, an underlying model. To
address this shortcoming, we introduce elastic predicates, a novel
approach to predicate-based statistical debugging. Elastic
predicates introduce profiling of values assigned to variables
within a failing program. These elastic predicates are better
predictors of software failure than the static and uniform
predicates used in existing techniques such as Cooperative Bug
Isolation (CBI). We present experimental results for established
fault localization benchmarks and widely used simulations that
show improved effectiveness.

Keywords-automated debugging; fault localization

I. INTRODUCTION
Our interest is in exploratory software. Exploratory

software comprises simulations, computational models and
other software deployed to gather insight into uncertainties in
an underlying model. These uncertainties are often reflected
through stochastic distributions, and the floating-point
computations that generally accompany them. Predictions
based on exploratory software outcomes have entered the
mainstream of critical public policy and research decision-
making practices, affecting large numbers of people and
valuable resources.

Unfortunately subject matter experts (SMEs) can struggle
with the resolution of unexpected exploratory software
outcomes. Unexpected outcomes can reflect new knowledge
about the underlying model, or a fault. Currently there is no
known automated analysis method for separating them. These
challenges represent the basis of our motivation. Separating
unexpected valid exploratory software outcomes from failures
is an interesting, difficult problem. We have not solved it.
However, our predicate-based statistical debugger, Exploratory
Software Predictor (ESP), does localize sources of unexpected
outcomes effectively in established fault localization
benchmarks and widely used simulations with elastic
predicates. ESP and elastic predicates are novel, and extend the
domain of programs for which fault localization analysis has

been shown to be effective. They are explained further in the
remainder of this paper.

II. ELASTIC PREDICATES AND ESP
ESP is a predicate-based statistical debugging approach

focused on identifying single or multiple sources of unexpected
outcomes in exploratory software. Predicate-based statistical
debugging represents a class of fault localization techniques
that share a common structure. Each consists of a set of
conditional propositions, or predicates, inserted into a failing
program and tested at particular program points. The predicates
are given an importance score based on how frequently they
are true in passing and failing test cases, ranked and provided
to SMEs to assist in finding and fixing faults.

In the canonical predicate-based statistical debugger
Cooperative Bug Isolation (CBI), three predicates are tested for
each assignment statement to, or return of, a variable x: (x>0),
(x=0) and (x<0) [1]. These predicates are uniform and static.
They are uniform in the sense that for each assignment to, or
return of, a variable x, the same set of conditional propositions
partition the values of x in the same manner. The predicates are
static because each conditional proposition is determined
before the execution of the program; the predicates do not
change based on dynamic analysis of the values of variable x.
Within ESP these three static and uniform predicates are
complemented with elastic predicates. Elastic predicates use
dynamic analysis to compute the mean,

€

µx , and standard
deviation,

€

σx , of the values assigned to, or returned from, a
variable x.

Computing elastic predicates in ESP is a two-step process.
First, as ESP executes test cases, the mean,

€

µx , and standard
deviation,

€

σx , for an assignment to, or return of, a variable x
are computed using online algorithms requiring constant space.
Once all test cases are executed, each

€

µx and

€

σx is stored.
Then, each

€

µx and

€

σx is used to insert nine elastic predicates
at each statement or return. These predicates partition the
values for an instrumented program point for three standard
deviations above and below

€

µx . They are defined below,
where i = 0, 1, 2.

•

€

x < µx − 3σ x() and

€

x > µx + 3σ x()

978-1-4577-1639-3/11/$26.00 c© 2011 IEEE ASE 2011, Lawrence, KS, USA

492

Authorized licensed use limited to: Old Dominion University. Downloaded on November 22,2024 at 13:37:15 UTC from IEEE Xplore. Restrictions apply.

•

€

µx = x

•

€

µx − (i +1)σ x() ≤ x < µx − (iσ x)() and

€

µx + iσ x() < x ≤ µx + (i +1)σ x()

In the second step, the test cases are re-executed and the
inserted predicates are assigned importance scores. Subsection
A describes scoring further. Subsection B presents an example
where elastic predicates are employed.

A. Importance Scores
The extent to which a predicate predicts program failure is

measured through an importance score. Both elastic predicates
and uniform and static predicates require two data structures
for each executed test case to compute an importance score: a
one bit feedback report, R, indicating if the test case passed or
failed and a vector V with a one bit entry for each predicate.
Within V, each entry indicates if the corresponding predicate is
observed to be true during test case execution. The data for
predicate p from each feedback report R and each
corresponding V is aggregated into these measures to account
for specificity (also called precision) and sensitivity (also called
recall) [1]:

1. S(p obs) and F(p obs) - the number of successful
and failed test cases where p was evaluated.

2. S(p) and F(p) - the number of successful and failed
test cases where p was evaluated and was true.

Increase uses these measures to estimate specificity. This
estimate accounts for the amount that p being true increases the
probability of failure, over reaching where p is evaluated.

€

Increase(p) =
F(p)

S(p) + F(p)
+

F(p obs)
S(p obs) + F(p obs)

 (1)

Sensitivity is estimated by the quantity:
log(F(p))/log(totalFailed). totalFailed is the number of failing
test cases. This estimate accounts for the number of failing test
cases in which a predicate is observed. The importance score
for a predicate p combines sensitivity and specificity.

€

Importance(p) =
2

1
Increase(p)

+
1

log(F(p)) log(totalFailed)

 (2)

B. BC Example: Elastic vs. Static and Uniform Predicates
Fig. 1 shows the more_arrays() function in the 1.06

version of BC, a basic command-line calculator tool [2]. The
more_arrays() function is responsible for increasing the
number of arrays needed for computing. Line 167 allocates a
larger chunk of memory. Line 171 is the top of a loop that
copies values over from the old, smaller array. Line 176
completes the resize by zeroing out the extra space. However,
there is a fault. The allocation on line 167 requests space for
a_count items. The copying loop on line 171 ranges from 1
through old_count - 1. The zeroing loop on line 176
continues from old_count through v_count - 1. Here, the
new storage buffer has room for a_count elements, but the

second loop is incorrectly bound by v_count, so when
v_count > a_count the program fails. The three static and
uniform predicates employed in CBI do not make the fault easy
to discern. Most values assigned to the variables in
more_arrays() are greater than zero, and satisfy the same
predicate, (x>0). This predicate does not closely match where
the fault is expressed, yielding a low importance score.
However, the elastic predicate, indx >

€

µ + 3σ , yields a high
importance score because it clusters together unusually large
values for indx. The predicate captures the fault: when the
input to BC defines an unusually large number of arrays, the
program fails. [1].

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

void
more_arrays()
{
 int indx;
 int old_count;
 bc_var_array **old_ary;
 char **old_names;

 /* Save the old values. */
 old_count = a_count;
 old_ary = arrays;
 old_names = a_names;

 /* Increment by a fixed amount and allocate. */
 a_count += STORE_INCR;
 arrays = (bc_var_array **) bc_malloc (a_count*sizeof(bc_var..
 a_names = (char **) bc_malloc (a_count*sizeof(char *));

 /* Copy the old arrays. */
 for (indx =1; indx < old_count; indx++)
 arrays[indx] = old_ary[indx];

 /* Initialize the new elements. */
 for (; indx < v_count; indx++)
 arrays[indx] = NULL;

 /* Free the old elements. */
 if (old_count != 0)
 {
 free (old_ary);
 free (old_names);
 }
}

Figure 1. The souce code of the more_arrays() function in BC.

III. EVALUATION

A. Experimental Setup
The utility of a fault localization technique is determined

through experimental evaluation. In our evaluation, we employ
(1) a set of widely used simulations which make extensive use
of stochastics and floating point computations and (2) a subset
of the Siemens Benchmark Suite [3]. The included Siemens
benchmarks are: tcas, totinfo, schedule and schedule2.
These were chosen because (1) they contain a large amount of
floating-point computations or (2) are a simulation. The
Siemens benchmarks test ESP’s effectiveness with well-known
applications in the fault localization community. However, the
widely used simulations better reflect our target application
domain due to their larger size and extensive use of stochastics
and floating-point computations. The evaluation includes the
following ranking approaches:

ESP. ESP ranks statements by the following:

1. For each statement identify the corresponding
predicate with the highest importance score and
move the statement and importance score to set ST.

2. Rank the statements in ST by importance score.

493

Authorized licensed use limited to: Old Dominion University. Downloaded on November 22,2024 at 13:37:15 UTC from IEEE Xplore. Restrictions apply.

OPT. OPT generates elastic predicates yielding the
maximum importance score at each program point. While OPT
is infeasible in practice it serves as the upper bound of
effectiveness from an elastic predicate-based approach.

CBI. CBI uses the three static and uniform predicates
previously described. To ensure fairness CBI is extended to
consider floating-point type variables. It uses ESP ranking.

Tarantula. Tarantula ranks statements according to the
suspiciousness (susp) of a statement s [5]:

€

susp(s) =
failed(s)

(failed(s) totalFailed) + (passed(s) totalPassed)
 (3)

Here, failed(s) and passed(s) represent the number of
failing and passing executions including s. totalFailed and
totalPassed are the total number of respective executions.

IVMP. Interesting Value Map Pairs (IVMP) ranks each
statement based on the number of failing executions where a
state alteration creates a passing execution [4]. The Tarantula
ranking system is used to break ties.

B. Widely Used Simulations
We conducted effectiveness experiments for the widely

used simulations shown in Table I. Here we describe each
simulation. Due to the size and complexity of the simulations
OPT is not included in this portion of the evaluation. The Bates
stochastic volatility jump-diffusion pricing model [6] must be
calibrated to previous data before it is employed to make price
predictions for the future [7]. The model produces an
unexpected outcome when relative price error of previous
data, is minimized during calibration, instead of the absolute
price error. The Heston stochastic volatility model [8] is used
here to reflect documented issues in the implementation of the
logarithm function for complex numbers [9]. The pricing
model of European Barrier Options contains a known error in
computation of bank offering rates [10]. The um-olsr protocol
used with the ns2 network simulator contains a documented
error in the degree method [11]. In the 2.19b version of the ns2
network simulator, there is a fault, which can incorrectly track
the number of nodes in the network [12, 13]. We also seed
faults in three queueing simulations built from a widely used
simulator [14]. The first is a G/G/1 simulation employing a
normal distribution when a hump-shaped distribution with
values strictly greater than zero is intended. The second is a
M/M/c simulation with a Poisson distribution implemented
incorrectly. The third is a MMPP/D/1 simulation with an
incorrectly bound loop.

For each simulation and approach, the rank of the statement
containing the fault is shown in Table I. The best rank for each
simulation is bolded. The table shows that ESP is capable of
significant improvements, at times approaching an order or
magnitude improvement. However for these simulations,
IVMP performs poorly because of: (1) floating-point output
and (2) the extensive use of stochastics within several
simulations. The first factor is evident in all the simulations.
For programs with floating-point output it is difficult for IVMP
to perform state alterations that cause a failing test case to pass.
This is due to the level of precision in the floating-point

computations that generate the simulation output. Thus, the
approach echoes Tarantula’s rankings for most statements [4].

The second factor is evident for the simulations that make
the most use of stochastic distributions – MC Euro, G/G/1 and
M/M/c. In these simulations it is most likely that a test case
will pass one time it is executed and fail another time. We
hypothesize that these cases affect the analysis capabilities of a
state altering approach like IVMP. To test this we fixed a seed
for each of the stochastic distributions used in the three
simulations. Given a fixed seed, IVMP is ~2x as effective.
However, fixing a seed still does not make IVMP outperform
ESP, and it limits the utility of the simulation to a SME.

TABLE I. EFFECTIVENESS RESULTS (BOLD SCORES ARE BEST)

Name ESP CBI IVMP Tarantula

Bates 3 56 42 78

Heston 1 16 68 144

MC Euro 5 38 35 45

um-olsr 23 196 87 268

ns2 v2.19b 21 107 145 241

G/G/1 1 1 296 314

M/M/c 12 68 157 157

MMPP/D/1 13 96 64 213

C. Siemens Suite Benchmarks
Next, we evaluate the approaches using the Siemens

Benchmark Suite. We assign a score to each set of statements
that is the percentage of executed statements that need not be
examined. Given a ranked list of statements S, with the faulty
statement at rank r, the score is: score(S) = (|S|-r)/|S| * 100. Fig.
2 shows our results. The x-axis represents the lower bound of
each score range, and the y-axis represents the percentage of
versions with a score greater than the lower bound.

Figure 2. Ranking approaches for the Siemens Benchmark Suite.

494

Authorized licensed use limited to: Old Dominion University. Downloaded on November 22,2024 at 13:37:15 UTC from IEEE Xplore. Restrictions apply.

ESP vs. CBI. ESP outperforms CBI. This is to be expected,
ESP offers the same predicates as CBI along with the nine
elastic predicates resulting in a better tool for identifying
predicates with high importance scores. Higher importance
scores leads to more effective fault localization.

ESP vs. OPT. OPT and ESP perform similarly for the
tcas, sched and sched2 benchmarks. However, for totinfo
OPT achieved a score of 85% or higher 19 times while ESP
only did so 12 times. ESP’s performance against OPT is
encouraging. While ESP offered similar effectiveness for three
of the four benchmarks, the better elastic predicates in OPT
enable even further improvements for programs with large
amounts of floating-point computations like totinfo.

ESP vs. Tarantula. Tarantula is not as effective as ESP for
the Siemens Benchmark Suite. Tarantula is the only technique
in our evaluation that does not consider variable values. This
limits the effectiveness of Tarantula but makes it the most
efficient technique evaluated.

ESP vs. IVMP. IVMP performs better than ESP for tcas,
sched and sched2. In these programs IVMP had a score of
90% or higher 40 times while ESP only had such a score 32
times. However, ESP performed well for the totinfo
program, which frequently employs floating-point
computations, and IVMP did not. Within totinfo it is very
difficult for IVMP to perform state alterations that cause a
failing test case to pass. Recall, that this difficulty is due to the
level of precision in the floating-point computations that
generate the program’s output [4]. As a result, IVMP performs
the same as or worse than Tarantula for 15 of the 23 versions of
totinfo.

IV. RELATED WORK
Existing statistical fault localization techniques come the

closest to addressing our need of analyzing exploratory
software outcomes. Tarantula [5] and CBI [1] are described in
Section 3. SOBER [15] uses the concept of evaluation bias to
express the probability that a predicate is true in an execution.
BARINEL pairs abstractions of program traces with Bayesian
reasoning [16]. Within different techniques, different metrics
are employed to rank statements: importance [1], increase [1],

€

F1 measure [17], Tarantula’s suspiciousness [5], capture
propagation [18] and the Ochiai metric [17, 18]. The
effectiveness of each of these can be improved when the
ranking metric is integrated with a cause-effect metric [17].
Additional enhancements exist. CBI can employ compound
Boolean expressions to improve effectiveness and adaptive
sampling can improve efficiency [19, 20]. Paths (serving as
informal elastic predicates) can be used instead of predicates to
offer improved effectiveness [21]. Short-circuit rules in the
evaluation of Boolean expressions can also improve
effectiveness [22]. Santelices et al. show that integrated results
with various program entities can offer improvements in
effectiveness over using any single program entity [23].

V. CONCLUSION
SMEs can struggle for decades with separating valid, but

unexpected, exploratory software outcomes from failures. This

remains an open problem. However, we have developed a
statistical debugger, ESP, which localizes sources of
unexpected outcomes. ESP complements the predicates used in
existing approaches with elastic predicates to improve
effectiveness. ESP outperforms the best alternatives in widely
used simulations and performs as well as the best alternative
for established benchmarks.

REFERENCES
[1] B. Liblit, “Cooperative Bug Isolation (Winning Thesis of the 2005 ACM

Doctoral Dissertation Competition),” Lecture Notes in Computer
Science vol. 4440, 2007.

[2] BC Calculator. http://www.gnu.org/software/bc/
[3] SIR: Software-artifact Infrastructure Repository.

http://sir.unl.edu/portal/index.html.
[4] D. Jeffery, N. Gupta and R. Gupta, “Fault Localization Using Value

Replacement,” Proc. of Int. Symp. Soft. Testing and Analysis, ACM
Press, July, 2008, pp. 167–177.

[5] J. A. Jones and M. J. Harrold, “Empirical evaluation of the Tarantula
automatic fault-localization technique,” Proc. of Int. Conf. on
Automated Soft. Engineering, ACM Press, Nov. 2005, pp. 273–282.

[6] Financial Quantitative Algorithms. http://www.javaquant.net/
[7] K . Detlefsen and W. K . Härdle, "Calibration Risk for Exotic Options,"

Journal of Derivatives vol. 14, Aug. 2007, pp. 47-63.
[8] Directory of Open Source Software for Quantitative Finance & Trading.

http://www.quantcode.com
[9] S. Mikhailov and U. Nögel. Heston’s Stochastic Volatilty Model:

Implementation, Calibration, and some Extensions. Wilmott, July 2003,
pp. 74–79.

[10] QuantLib. http://quantlib.org/index.shtml
[11] Bug in um-olsr? http://stackoverflow.com/questions/4190561/bug-in-

um-olsr-for-ns-2-34
[12] ns-2: The Network Simulator. http://is.edu/nsam/ns
[13] ns2 Problems. http://www.isi.edu/nsnam/ns/ns-problems.html
[14] Simpack Toolkit. http://cise.ufl.edu/~fishwick/simpack.html
[15] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “SOBER: Statistical

model-based bug localization,” Proc. of Symp. on Foundations of Soft.
Engineering, ACM Press, Sep. 2005, pp. 286–295.

[16] R. Abreu, P. Zoeteweij, and A. van Gemund, “On the Accuracy of
Spectrum-based Fault Localization,” In Proc. of Testing: Acad. and Ind.
Conf. Prac. and Res. Tech., IEEE Press, Sept. 2007, pp. 89–98.

[17] G. K. Baah, A. Podgurski, and M. J. Harrold, “Causal Inference for
Statistical Fault Localization,” In Proc. of Int. Symp. on Software
Testing and Analysis, ACM Press, July 2010, pp. 73-83.

[18] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang and X. Wang. “Capturing
Propagation of Infected Program States,” Proc. of Symp. on Foundations
of Soft. Engineering, ACM Press, Sep. 2009, pp. 43-52.

[19] P. Arumuga Nainar and B. Liblit, “Adaptive bug isolation,” Proc. of Int.
Conf. on Soft. Engineering, ACM Press, May 2010, pp. 255- 264.

[20] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit, “Statistical
debugging using compound Boolean predicates,” Proc. of Int. Symp. on
Soft.Testing and Analysis, ACM Press, July 2007, pp. 5–15.

[21] T. M. Chilimbi, B. Liblit, K. K. Mehra, A. V. Nori, and K. Vaswani,
“HOLMES: Effective statistical debugging via efficient path profiling,”
Proc. of Int. Conf. Soft. Engineering, ACM Press, May 2009, pp. 34–44.

[22] Z. Zhang, W. Chan, T. Tse, P. Hu, and X. Wang, “Is non- parametric
hypothesis testing model robust for statistical fault localization?” Info.
and Soft. Tech. vol. 51, Nov. 2009, pp. 1573-1585.

[23] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight fault-
localization using multiple coverage types,” Proc. of Int. Conf. on Soft.
Engineering, ACM Press, May 2009, pp. 56-66.

495

Authorized licensed use limited to: Old Dominion University. Downloaded on November 22,2024 at 13:37:15 UTC from IEEE Xplore. Restrictions apply.

