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A B S T R A C T

Prolonged exposure to extreme heat and direct sunlight can result in illness and death. In urban areas of dense
concentrations of pavement, buildings, and other surfaces that absorb and retain heat, harmful environmental
exposures to extreme heat and direct sunlight for residents can occur on a daily basis during certain parts of the
year. Tree canopies provide shade and help to cool the environment, making mature trees with large canopies
a simple and effective way to reduce urban heat and avoid direct sunlight. We develop a demographically
representative agent-based model to understand the extent to which different demographics of residents in
Norfolk, VA are (in)equitably shaded from direct sunlight and extreme heat conditions during a walk on a
clear summer day. In the model each agent represents a different resident of Norfolk, VA. We use the model
to assess the extent to which the city’s tree planting plan will be effective in remediating any existing inequities.
Our results show that inequitable conditions exist for residents at (1) different education levels, (2) different
income levels, and (3) living in different census tracts. Norfolk’s Tree Planting Program effectively reduces
the distance residents of all demographics walk in extreme heat and are exposed to direct sunlight. However,
residents of the city at lower income levels still experience statistically significantly more extreme heat and
direct sunlight exposure due to a lack of tree canopies in summer months than those at higher income levels.
1. Introduction

Urban areas have dense concentrations of pavement, buildings,
and other surfaces that absorb and retain heat. These conditions, par-
ticularly during the summer months, can lead to daily occurrences
of prolonged exposure to direct sunlight and extreme heat for resi-
dents (Hsu et al., 2021; Coffel et al., 2018). Exposure to extreme heat
and direct sunlight can result in sunburns, cancer, illness and ultimately
death (Tuholske et al., 2021; Vaidyanathan et al., 2020; Wondmagegn
et al., 2019). In the 2010s, an estimated 12,000 (95% CI 7,400–16,500)
annual premature heat stress related deaths occurred across the United
States (Shindell et al., 2020). In a study conducted from 2014 to 2018
of US Army soldiers on heat stroke and heat exhaustion, the costs of
direct care resulting from heat conditions was 7.3 million dollars or
an average of 559 dollars per encounter (Forrest et al., 2020). Extreme
heat conditions are expected to continue increasing in frequency into
the future (Tuholske et al., 2021). At the same time, approximately 36
million trees are disappearing from United States’ urban areas annually
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with a corresponding estimated annual loss of 96 million dollars in
corresponding health benefits (Nowak and Greenfield, 2018). These
factors serve to further compound and exacerbate contributors to health
inequities for exposure to direct sunlight and extreme heat.

Trees and their resulting canopies provide shade which can help
cool the environment, making mature trees with large canopies a
simple and effective way to reduce urban heat (Ziter et al., 2019;
Tamaskani Esfehankalateh et al., 2021; Aram et al., 2019; Sinha et al.,
2021; Sanusi et al., 2016). Increased tree and vegetation cover have
been found to reduce the negative health effects of exposure to direct
sunlight and extreme heat, and to help reduce the risks of heat stress
related morbidity and mortality in outdoor spaces, while improving
actual and perceived levels of thermal comfort (Wolf et al., 2020). Tree
planting strategies can mitigate the effects of pollution, pollen, heat
index, and heat related ailments (Bodnaruk et al., 2017). In addition,
studies have shown that: (1) increased residential proximity to any
type of green space is associated with significantly decreased risks of
vailable online 10 July 2023
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mortality from all causes of death (Crouse et al., 2017; Kardan et al.,
2015), and (2) the removal of green spaces, and in particular trees and
their canopies, can have cascading negative consequence for the health
and fitness of those residing nearby (Widyastuti et al., 2022).

Studies on pollution removal strategies for ecosystem services
showed an expected 4.3 to 6.2 million dollars gain per year in benefits
from differing tree placement strategies in Baltimore, Maryland (Bod-
naruk et al., 2017), whereas in mega-cities the estimated benefits
of converting tree cover area to tree canopy is 1 billion dollars per
year (Endreny et al., 2017). Furthermore, researchers have found that
the positive health effects of urban greenness can mitigate the negative
effects of fine particulate matter air pollution (Crouse et al., 2019).

We explore health inequities based on the prevalence of exposure
to direct sunlight and extreme heat within demographic subgroups
of the city’s population compared with the other demographic sub-
groups (Braveman, 2014; Kawachi et al., 2002). A systematic literature
search and meta-analysis of forest cover and income found evidence
of income-based inequity in urban forest cover (Gerrish and Watkins,
2018). A study of US urban areas also found that low-income areas were
on average 15.2% less tree covered and 1.5 degrees Celsius (2.7 Fahren-
heit) hotter than high-income areas (McDonald et al., 2021). Similarly,
another study showed that communities in Greater Bahr el Ghazal and
the Equatorias in South Sudan, where less trees were planted, were
more likely to experience issues related to food scarcity (Bunch et al.,
2020).

Our objective is to understand the extent to which the cooling pro-
vided by the shade of tree canopies is (in)equitably distributed across
a variety of demographics in Norfolk, VA. To conduct our assessment
we use an agent-based model of Norfolk which can produce a demo-
graphically representative representation of the city. In the model each
agent represents a resident of Norfolk, VA. The model simulates each
resident of Norfolk, VA walking approx five kilometers in extreme heat
on a clear, summer day between their residence and another location
in the city (i.e. another residence, business, recreation center, etc.). We
quantify the amount of distance during the walk that individuals of
each race, income level, education level, and census tract are exposed
to direct sunlight and extreme heat due to a lack of tree canopy
shade. Analysis of quantified results enable us to test for statistically
significant inequities across the identified demographics. Our results
show the extent to which: (1) the extreme heat/direct sunlight exposure
is inequitable for certain demographics given the current significant
trees in the city, and (2) the extent to which those inequities will be
reduced by the City of Norfolk’s proposed Tree Planting Program.

Next, we provide necessary background material to understand the
importance of identifying and addressing extreme heat/direct sunlight
exposure inequities and why taking a geographic and demographic
specific approach is paramount. Then, we provide an overview of the
representative agents within our model of Norfolk, VA, their walking
paths, the locations of trees, and the dimensions of the trees’ canopies.
Finally, we present our results, summarize the findings, and discuss the
limitations of our work.

2. Background and related work

2.1. Climate change

Climate change is expected to increase heat exposure risk as a non-
linear function of temperature (Andrews et al., 2018). Heat exposure
will increase significantly by 2030 and aggressive action is needed to
mitigate future risk (Sun et al., 2019; Wilhelmi and Hayden, 2010).
As a result, researchers have explored adding tree cover to urban area.
Thom et al. worked to measure and validate the mitigating effects of the
simulated trees on the real environment (Thom et al., 2016). Similarly,
Lachapelle et al. extended an existing computational model to demon-
strate that shade-trees can reduce daytime temperature on sidewalks by
almost 20 ◦C (36 ◦F) (Lachapelle et al., 2022). Furthermore, Ziter, et al.
2

found that urban temperatures experienced by residents decrease as a
non-linear function of percent canopy cover (Ziter et al., 2019). Finally,
Schwaab et al. analyzed satellite land-surface temperature (LST) and
land-cover data for 293 European cities to show that urban areas with
trees have LSTs on average 4-8 ◦C (7–14 ◦F) lower than urban areas
without trees (Schwaab et al., 2021).

2.2. Connection between wealth and biodiversity inequity

Researchers have identified a correlation between wealth, tree
canopy coverage, and biodiversity inequity (Pedlowski et al., 2002;
Harlan et al., 2013; Gabbe et al., 2022), and that the correlation
between the two is growing stronger in more recent years (Jenerette
et al., 2011). This is in part due to the effects of redlining. The US
ederal Home Loan Bank Board established the practice of redlining in

the 1930s with the development of four real-estate investment classes,
ranging in descending order of desirability from green to red. The
practice of redlining, drawing the boundaries around the red class
of properties, resulted in a set of policies that discriminated against
people of color in mortgage lending. These policies, in part, created
racially segregated and disparate neighborhoods (Nier III, 1998) with
significantly less tree cover, and higher land surface temperatures, in
redlined zones than green zones (Nowak et al., 2022).

2.3. Health benefits of biodiversity

Understanding health benefits of biodiversity is paramount as re-
search has shown that temperature decreases caused by tree canopies
can statistically significantly decrease the number of deaths and doctor
visits in an urban area, especially for those age 65 or greater (Sinha
et al., 2021; McDonald et al., 2020). Additional health and lifestyle
improvements including high levels of physical exercise, mental well-
being, and perceived safety have been linked at a fine-grained geo-
graphic level to extent of tree canopy coverage (Lafortezza et al., 2009;
Mouratidis, 2019; Collins et al., 2020; Gore et al., 2022). Furthermore,
Li et al. found that hospitals in redlined zones have more heat-related
outpatient visits and high inpatient admission rates (Li et al., 2022).

2.4. Agent-based simulation of tree canopies

Despite all of this work there have not been many efforts to simulate
the effects of tree canopies on individuals in an urban area. The study
that most closely matches our effort was performed by Khan et al. In
their work they use an urban micro-climate thermal modeling and a
thermal comfort model, within an agent-based model, to determine
how agents in Chicago move throughout the city (Khan, 2021). Our
work furthers their effort by implementing ABM analysis at a more fine-
grained geographic level with a focus on how different demographics
are inequitably exposed to extreme heat.

3. Methods

3.1. Ethical considerations

Our work uses publicly-available data related to addresses in Nor-
folk, VA, trees, and resident demographics. The datasets reflect aggre-
gate variables measured at the demographic-levels of a city and do
not contain any personally identifiable information. Therefore, they do
not involve human subjects as defined by federal regulations and their
use does not require ethics board review or approval (Kearl, 2012).
Additionally, as presented in the next section, all of the data and code
for our work is made publicly available to facilitate transparency and

reproducibility of our study.
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Fig. 1. An overview of the datasets and other supplementary materials supplied in the appendices. ACS: American Communities Survey; CSV: Comma Separated Values.
3.2. Publicly available data

3.2.1. Overview
Our approach to understanding and assessing demographic

(in)equity of extreme heat/direct sunlight exposure during a walk on
a clear summer day in Norfolk, VA due to lack of tree canopies uses
data from (1) the American Communities Survey (ACS) for census
tract boundaries and demographic variables (National Research Council
et al., 2007; Berkley, 2017); (2) the Norfolk Master Gardeners for
existing trees’ types, canopies, and locations that they have classified
as significant (Norfolk Open Data, 2023b); (3) the City of Norfolk’s
Tree Planting Program (Norfolk Open Data, 2023c) for the locations
and types of planned trees into the future; and (4) the City of Norfolk
for the location of residences, businesses, and recreation centers within
the city (Norfolk Open Data, 2023a). All the datasets, source code,
and other supplementary materials are supplied in the appendices of
this paper. A visual overview of our approach and these appendices
is shown in Fig. 1. The data is also available in our Mendeley Data
repository online (Zamponi et al., 2023b).
3

3.2.2. American Communities Survey (ACS)
Census tracts are small, contiguous, and relatively permanent statis-

tical subdivisions of a county or an equivalent entity. The populations
in census tracts vary from 1200 to 8000. Census tracts provide a
stable geographic unit for statistical analysis in the US Census and
ACS (Berkley, 2017).

The ACS is an ongoing national survey that samples a subset of
individuals within the same geographic areas in the US Census. Using
the same questions, data were collected each month throughout the
year. In contrast, the US Census provides a more comprehensive sample
of individuals in the United States, collecting data from more individ-
uals during a particular period (March to August) but administered
only once every 10 years. A metaphor helps elucidate the differences
between the two surveys: the US Census serves as a high-resolution
photograph of the US population once every 10 years, whereas the
ACS serves as many low-resolution continually updated videos over the
same period (Berkley, 2017). Appendix A.1 provides the data included
within the ACS for this study.
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Fig. 2. Start and finish state of an example of using Iterative Proportional Fitting to estimate a joint probability distribution.
3.2.3. Address information resource
The Address Information Resource is a compilation of active and

pending addresses in the City of Norfolk. It provides a consolidated
source to allow for quick and easy access to information about an
address including details related to residences, businesses, recreation
centers, school districts, municipal services, planning, public safety,
civic leadership. The data is updated annually (Norfolk Open Data,
2023a). Appendix A.2 provides the address information data included
in this study.

3.2.4. Current significant trees
The data collected about the significant trees in Norfolk, VA is

gathered by volunteers with the Norfolk Master Gardener Association
and provided to the city’ Parks and Forestry Operations (Norfolk Master
Gardeners, 2023). The diameter, height, canopy spread, general loca-
tion and species of the tree is included for each tree in the dataset.
The data is updated every five years (Norfolk Open Data, 2023b).
Appendix A.3 provides the current significant tree data included in this
study.

3.2.5. Tree Planting Program
The City of Norfolk has tracked each tree planted along city streets,

within city parks, and on other city properties every year since 2018.
For each entry in this dataset the species, planting date, geographic
location, and estimated canopy is provided. City staff utilizes Mi-
crosoft excel to track tree planting information. The data is updated
annually (Norfolk Open Data, 2023c). Appendix A.4 provides the tree
planting program data included in this study.

3.3. Agent-based model

We utilized the data described in the previous sections to construct
a demographically representative agent-based model. The model is an
extension of our previous work (Zamponi et al., 2023a). It has the
ability to provide one-to-one correspondence between residents and
simulated agents, maintaining empirical connections to the real-world
data, and also maintaining the spatial assumptions of the environ-
ment (Gilbert and Terna, 2000; Kavak et al., 2018). This model is
applied to understand the extent to which different demographics of
residents are (in)equitably shaded from extreme heat/direct sunlight
conditions during a approx five kilometer walk on a clear summer day
in Norfolk, VA. The Overview, Design concepts, and Details (ODD)
protocol for this model is provided in Appendix E.
4

3.3.1. Iterative Proportional Fitting (IPF)
Our model leverages established demographic practices to generate

representative agents at the census tract-level for the city of Norfolk,
VA. We apply Iterative Proportional Fitting (IPF) (Fienberg and Meyer,
1981; Wong, 1992) to estimate joint probability distributions of demo-
graphics for each census tract, which we later sample when generating
agents in our model (Kolenikov, 2014; Norman, 1999; Simpson and
Tranmer, 2005; Choupani and Mamdoohi, 2016). IPF is applied to the
data from the 2021 ACS. For each census tract in Norfolk, VA, we assign
the income level and education level of an individual by sampling from
two derived distinct joint probability distributions using IPF. Our appli-
cation of IPF that the values for every demographics group included in
the analysis is positive (i.e. > 0). An overview of the application of IPF
to estimate the joint distribution of two demographics within a census
tract from the ACS is shown in Fig. 2. It proceeds as follows. First,
the levels associated with each of the two demographics form a two-
dimensional matrix. In our example, the four groups associated with
one demographic form the rows of the matrix, and the three groups
associated with another demographic for the columns.

Along the exterior of the matrix are marginal values (highlighted
in red) for each demographic group. The initial marginal values for
each demographic group are taken from the values provided in the
ACS. Next, the initial interior values (highlighted in black) of the
matrix are determined. These values are chosen such that the to-
tal sum of the interior rows equals the total sum of the interior
columns. The IPF initialization matrix for two demographic attributes
is shown in the left hand side of Fig. 2. The exterior values are assigned
from the sample data, and the total of all four interior rows is 96
(15+28+28+25), which is the same as the total of all three interior
columns (26+40+30) (Fienberg and Meyer, 1981; Wong, 1992).

Next, we will show how iterations of IPF yield the joint probability
estimate on the right hand side of Fig. 2. Each iteration of IPF consists
of a row adjustment and a column adjustment to the matrix. These
adjustments fit the sum of the matrix values across columns and rows
such that the values converge to the marginal distribution values from
the data. During a row adjustment, each row of cells is proportionally
adjusted to equal the marginal row total. Specifically, each cell within
a row is divided by the actual sum of the row of cells, then multiplied
by the marginal row total. This process is shown on the left-hand
side of Fig. 3. During a column adjustment within an iteration each
column of already row-adjusted cells is proportionally adjusted to equal
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Fig. 3. Iterations within an example of using Iterative Proportional Fitting to estimate a joint probability distribution.
the marginal column totals. Specifically, each cell within a column is
divided by the actual sum of the column of cells, then multiplied by
the marginal column total. This process is shown in the right hand side
of Fig. 3.

Iteration adjustments continue until the values in the matrix con-
verge to the marginal totals. Once the process is complete any decimal
5

values within a cell are rounded up or down, and the joint probability
distribution is specified as shown on the right hand side of Fig. 2.

3.3.2. Generating representative agents
We apply IPF to derive two joint probability distributions for each

census tract. These are the joint probability distribution of: (1) race
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Fig. 4. The step by step process of generating representative agents within our model.
and education level, and (2) education level and income level. Once
these two distributions are estimated we can sample them to generate
representative agent residents for each census tract in Norfolk, VA using
the process shown in Fig. 4.

Fig. 4 shows that the first step in the agent-generation process is
to sample a distribution of all residents in Norfolk, VA to identify the
census tracts that are assigned to the agents. In the second step, the
data from the ACS specific to the agent’s census tract is sampled to
determine the race of the agent. Next, the joint race/education level
probability distribution for the census tract is sampled to determine the
education level given the agent’s race. Finally, the income level of the
agent is determined by sampling the joint education level/income level
probability distribution.

Each generated agent is also assigned a home, and a destination
location. The home location reflects the latitude and longitude of an
address in the census tract that the agent resides. The home address
is determined by sampling the addresses listed in Address Information
Resource that are within the bounding box of the agent’s census tract.
The destination locations are addresses in the City of Norfolk. These
are determined by sampling the addresses listed in Address Information
Resource.

Once each location is assigned, a route of latitude and longitude
points from the home to their destination location, and back, are
generated for the agent. The route reflects the shortest time estimated
path between the two locations using road and walking paths within
the City of Norfolk. The average length between consecutive points in
a route is approx 250 m (Hash.ai, 2020).

3.3.3. Placement of trees and tree canopies
Once all agents have been generated, the trees and their canopies

are placed on the simulation landscape. Each tree listed in the Signifi-
cant Trees dataset is placed on the simulation landscape with a radius
of shade equal to its canopy spread. The shade region of a tree reflects
the circumference distance around each tree that keeps the agents from
being exposed to extreme heat/direct sunlight.

The model can also be initialized with the trees included in the
City’s Tree Planting Program. In this scenario, all trees from the Tree
Planting Program dataset, which also includes the current significant
trees, are added to the model landscape with an associated canopy
spread based on the estimate supplied by the city.
6

3.3.4. Agent decision diagram
Recall, the goal of the simulation is to understand the extent to

which different demographics of residents in Norfolk, VA are (in)equi-
tably shaded by trees from extreme heat/direct sunlight conditions
during the middle of a clear summer day while walking in the city.
To this end, during the course of the simulation each agent walks
between their home and their destination repeatedly for 200 time steps.
Between each time step, each agent travels approx 250 m resulting in
a walk that is approx five kilometers long. We assume that agents take
the shortest distance path between consecutive latitude and longitude
points in their route. It should be noted that even though each agent
has a destination, their walk is only complete when the 200 time steps
have passed. In other words, agents can travel back and forth several
times between their assigned locations during the run of the simulation.
This design decision is made to ensure the length of the agent’s walk in
the city are as equal as possible. The limitations imposed by this design
decision, and others, are discussed in Section 4.5.

At each timestep an agent follows the decision diagram specified in
Fig. 5. Fig. 5 shows that at the beginning of each timestep an agent cal-
culates the amount of distance they traveled while they were exposed to
extreme heat/direct sunlight during the previous timestep. An agent is
exposed to extreme heat/direct sunlight during their walk if their path
does not take them under the shade of a tree canopy. This implementa-
tion decision reflects the assumption that the agent’s walk occurs in the
middle of a hot, clear summer day. The shade of a tree can reduce the
temperature 10–15 degrees Fahrenheit (5–8 ◦C) in this scenario which
is a sufficient reduction to avoid extreme heat/direct sunlight exposure.
Limitations imposed by our design decisions, including this one, are
discussed in Section 4.5.

Next, Fig. 5 shows the check the agent performs to determine if they
are at their destination. If the agent is at their destination, then they set
their walking route to be from their destination to their home. Next, the
agent checks if they are at their home. If they are, they set their route
to be from their home to their destination. Finally, the agent moves
to the next latitude, longitude location on their route. Once 200 time
steps in the simulation have passed the model run is complete. Recall,
200 time steps is the time required for each agent to walk approx five
kilometers.
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Fig. 5. Decision diagram for agents, for each time step.

4. Evaluation

4.1. Research question and measures

Our research question is: to what extent do trees and their canopies
equitably reduce extreme heat/direct sunlight exposure to residents of dif-
ferent demographic groups in Norfolk, VA. The model output needed to
address our research question is: the distance agents travel during their
walk while they are exposed extreme heat/direct sunlight (i.e. not under
the shade area of a tree). We compute this distance for the following
resident demographics: (1) race, (2) education level, (3) income level,
and (4) census tract of residence.

In the remainder of this section we explore the extent to which there
are statistically significant differences, in terms of distance traveled
while exposed to extreme heat/direct sunlight among different agent
demographics. Then, we explore to what extent the Tree Planting Pro-
gram currently in place by the City of Norfolk addresses any statistically
significant differences. Recall, the Tree Planting Program reflects each
tree planted along city streets, within city parks, and on other city
properties for every year since 2018. While these trees are not yet
mature, our goal is to explore the effects they will have on extreme
heat/direct sunlight exposure inequities among resident demographics,
once they become mature trees. A statistically significant difference is
determined by applying a two-sample, one-tailed t-test to determine
if the demographic group with the highest mean extreme heat/direct
sunlight exposure (i.e. average for the maximally exposed group) is
statistically significantly greater than the group with the lowest mean
extreme heat/direct sunlight exposure (i.e. average for the minimally
exposed group) (Posten, 1984). If the test shows a statistically signif-
icant difference between these two groups, then we conclude there is
an demographic inequity with respect to extreme heat/direct sunlight
exposure between the two groups.
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Table 1
Largest inequities, in terms of distance traveled while being exposed to extreme
heat/direct sunlight, during model run given current significant trees in Norfolk, VA.

Demographic Most exposed Grp Least exposed Grp T-Test
Norfolk, VA Grp size Norfolk, VA Grp size P-Value

Race Hispanic White 0.427
16,144 113,159

Education level 9th–12th Grade Bachelor’s Degree 0.012*
30,786 28,117

Income level $35,000–$50,000 $150K–$200K 0.014*
32,964 9942

Census tract Census Tract 42 Census Tract 21 0.037*
of residence 1408 1375

*Indicates that the inequity is statistically significant at 𝑃 < 0.05.

Table 2
Largest inequities, in terms of distance traveled while being exposed to extreme
heat/direct sunlight, during model run given current significant trees and maturation
of trees in City of Norfolk’s Tree Planting Program.

Demographic Most exposed Grp Least exposed Grp T-Test
Norfolk, VA Grp size Norfolk, VA Grp size P-Value

Race Asian White 0.300
8960 113,159

Education level 9th–12th Grade Bachelor’s Degree 0.078
30,786 28,117

Income level $15,000–$35,000 $150K–$200K 0.049*
53,525 9941

Census tract Census Tract 47 Census Tract 22 0.147
of residence 2733 1818

*Indicates that the inequity is statistically significant at 𝑃 < 0.05.

4.2. Results

Figs. 6–9 and Tables 1–2 show the results of our evaluation. Each
figure elucidates the distribution of distances walked while being ex-
posed to extreme heat/direct sunlight for the minimally and maximally
exposed group for each demographic. The left hand side of each fig-
ure, labeled A, shows the distribution of the two groups for each
demographic given the current significant trees in Norfolk, VA. The
right hand side of each figure, labeled B, shows the distribution of
the two groups for each demographic once all trees in the city’s Tree
Planting Program have matured. The distribution for the minimally and
maximally exposed groups for the race demographic is shown in Fig. 6;
education level is shown in Fig. 7; income level is shown in Fig. 8 and
census tract is shown in Fig. 9.

Table 1 shows the results of the evaluation given all current signifi-
cant trees and Table 2 shows the results of the evaluation for the trees
in the City of Norfolk’s Tree Planting Program once they have matured.

4.3. Discussion of principal findings

The results in Figs. 6A–9A and Table 1 show that certain demo-
graphic groups walk statistically significantly (𝑃 < 0.05) more distance
while being exposed to extreme heat/direct sunlight than others. This
inequity is a result of those individuals encountering less shade from
the current significant trees in the city. Specifically, agents with less
income ($35,000–$50,000), less education (9th–12th Grade) and living
in census tract 42 in Norfolk, VA, all walk more distance in extreme
heat/direct sunlight than agents with more income ($150K–$200K),
more education (Bachelor’s Degree), and those living in census tract 22
in Norfolk, VA. In each of these cases there are agents in the maximally
exposed group that walk more than 95% of the distance they travel
(4.5 km out of 5.0 km) without shade.

The results in Table 2 show that once the trees in the City of
Norfolk’s Tree Planting Program mature the added trees will effectively
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Fig. 6. Distribution of distance traveled in meters for min (blue) and max (red) extreme heat/direct sunlight exposure racial group with the current set of significant trees (A)
and once all trees in the Tree Planting Program have matured (B).
Fig. 7. Distribution of distance traveled in meters for min (blue) and max (red) extreme heat/direct sunlight exposure education level group with the current set of significant
trees (A) and once all trees in the Tree Planting Program have matured (B).
remediate: (1) the distance residents in all demographics walk in
extreme heat/direct sunlight and (2) most of the identified inequities
highlighted in Table 1. Figs. 6B–9B show that even in the maximally
exposed groups there are rarely agents that walk more than 95% of the
8

distance they travel (4.5 km out of 5.0 km) without shade. Furthermore,
Table 2 shows that the only demographic groups that remain exposed
to statistically significantly (at 𝑃 < 0.05) more extreme heat/direct
sunlight during their walk on a clear summer day are agents at different
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Fig. 8. Distribution of distance traveled in meters for min (blue) and max (red) extreme heat/direct sunlight exposure income level group with the current set of significant trees
(A) and once all trees in the Tree Planting Program have matured (B).

Fig. 9. Distribution of distance traveled in meters for min (blue) and max (red) extreme heat/direct sunlight exposure census tract with the current set of significant trees (A)
and once all trees in the Tree Planting Program have matured (B).
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Fig. 10. The locations of areas where adding five equally spaced trees in those census tracts where residents experience the most extreme heat/direct sunlight exposures along
approx 5 km in Norfolk, VA due to a lack of tree canopies, even when considering the City of Norfolk’s Tree Planting Program. Census tracts 42 (004200) and 47 (004700) are
shown in (A). Census tracts 26 (002600), 27 (002700) and 29 (002900) are shown in (B).
income levels. In the model run where all the trees in the City of
Norfolk’s Tree Planting Program have matured agents with less income
($15,000–$35,000) still walk longer in extreme heat/direct sunlight
than those with more income ($150K–$200K). However, even in this
case, the Tree Planting Program reduces the evidence of a significant
inequity by increasing the 𝑃 -value for the income level demographic
from 0.014 in Table 1 to 0.049 in Table 2.

4.4. Specific recommendations

Our work can also support specific recommendations to decision-
makers about priority locations in the city where new trees should
be planted to address extreme heat/direct sunlight exposure. Fig. 10
provides an example. To generate Fig. 10 we identified the five census
tracts where residents experience the most extreme heat/direct sunlight
exposures due to a lack of tree canopies during their approx 5 km walk,
even after those tree planted in the City of Norfolk’s Tree Planting
Program have matured. These census tracts (26, 27, 29, 42, and 47) are
outlined and colored in red in Fig. 10. Next, we identified ten areas in
those census tracts where planting five additional tree in the area would
reduce the extreme heat/direct sunlight exposure the most along the
walking routes of residents of the census tracts. These areas are outline
in light blue. To produce these recommendations we used the results
of our simulation and assumed that the new five trees to be planted
would be equally spaced within the identified area and the future tree
canopy sizes of the new trees would be the mean canopy size of the
trees listed in the Tree Planting Program. In addition, we required at
least one area to be identified for each of the census tracts. The results
of this analysis are location specific recommendations for the next 50
trees to be planted in Norfolk, VA.

4.5. Limitations

There are a number of methodological assumptions and limitations
that limit the context in which our findings are valid.

4.5.1. Data limitations
A number of limitations exist within the datasets we use in the

model. Here we review each of these. We discuss the extent to which
they limit the actionability of our results, and how we plan to address
these limitations in future work.
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First, the data in the Significant Trees dataset only includes approx
500 trees. Furthermore, it is maintained by a volunteer group as
opposed to a professional organization. However, there is no other
publicly available data that includes locations and attributes about the
current trees in the city. We are currently working with the City of
Norfolk to address this limitation. Nevertheless, even a more complete
dataset of mature trees provided by the city will not include trees
planted on private property. Assessing the quality of the utilized data
was not conducted as we had no direct access to an independent dataset
to utilize for conducting data evaluation (Augusiak et al., 2014).

Another data limitation is that the addresses in the Address Infor-
mation Resource are not categorized into zones such as: residential,
commercial, industrial, agricultural, rural, municipal, rural, historic,
and aesthetic. As a result, our home and destination address assignment
for agents is very general. Once an agent is generated they are assigned
a home address by sampling an address in the agent’s census tract.
This does not necessarily reflect a residential address within the city.
Similarly, an agent’s destination address was assigned by sampling a
random address in the city. As a result, the destination of an agent for
their walk may not be a regularly visited location by city residents. In
future work we would like to add in-zone categorizations for our ad-
dresses to provide agents with more realistic residential and destination
addresses.

Finally, the path of latitude and longitude points generated for
each agent to walk is limited. Each path is based on the shortest time
distance path between the two points using the arterial road network
in Norfolk, VA. Since the data to assign routes is based on roadways
and minimal travel time it does not account for the sidewalks, walking
paths, or other features that may make one route more attractive than
another for a pedestrian. In future work we will identify pedestrian
specific data to use in assigning the path of latitude and longitude
points generated for each agent to walk between their home and
destination.

4.5.2. Approach limitations
Our approach to simulating extreme heat/direct sunlight exposure

on a clear, hot, summer day comes with several limitations. It is impor-
tant to note that while these assumptions limit the extent to which our
model is a reflection of reality our results still provide high-level insight
into which demographic inequities, with respect to extreme heat/direct
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Fig. 11. The locations and canopy size in feet of current significant trees in and future trees from the Tree Planting Program in Norfolk, VA.
sunlight exposure, exist in the city of Norfolk. Furthermore, our model
provides a well-grounded estimate of how effective the City of Norfolk’s
Tree Planting Program will be in addressing the identified inequities.
The insight provided is still actionable to decision makers interested in
our research question even though every agent action is not separately
simulated in a fine-grained micro-simulation.

First, we assume that the temperature agents experience throughout
their walk will always be extreme if they are not under the shade
of a tree. This assumption is limiting because individuals can take
other precautions (i.e., wide brimmed hat, cooling packs, taking a
break indoors, dousing themselves with water, etc.) to avoid extreme
heat/direct sunlight exposure besides walking under tree canopies.
Agents can learn and form behaviors to adapt to issues and challenges
within environment spaces (An et al., 2021; Manson et al., 2020).
While this certainly applies to settings involving extreme heat and
direct sunlight, our model specifically assumes that the agents maintain
behaviors that match non-extreme heat/non-direct sunlight conditions
so that we can assess the benefits that tree canopies could provide based
on normal routing.

Furthermore, temperature is dynamic throughout the day. Even
though our model only simulates a approx 5 km walk it is likely
that the temperature will change during that period. Solar radiation
and heat storage distribute spatially based on topography, humidity,
land cover, and weather (Lookingbill and Urban, 2003; Yang et al.,
2013); however, these factors are not accounted for in our model.
Additionally, we assume that agents walk back and forth between their
home and destination for approx 5 km. This assumption equalizes travel
distance between all agents but does not match the behavior of actual
pedestrians.
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We assume that the heat reduction benefits provided by the tree
canopies are the same across significant trees; however, statistically
significant differences have been observed between tree species with
respect to cooling effects (Sanusi et al., 2017). The cooling capacity
of trees differs based on diversity for peri-urban forest, urban forest,
and street trees (Marando et al., 2019). Cooling benefits have also
been shown to differ under canopies for trees that are east–west versus
streets that are north–south with a higher average reduction from
east–west streets (Sanusi et al., 2016). While our model does capture
the genus and species of each tree, it does not currently differentiate
cooling effects per genus or species.

Finally, we assume that all current significant trees will still be
present with the same canopy when all trees in the Tree Planting
Program mature. This will not be the case as several of the mature
trees will either have branches cut or die, particularly for trees adjacent
to power lines which receive regular trimmings to ensure the safe
and uninterrupted delivery of power. We maintain an assumption that
every tree in the Tree Planting Program will mature with the estimated
canopy. Unfortunately, some of the currently planted trees will either
die or fail to fully mature.

4.5.3. Confounding factors
There are a number of confounding factors not considered in our

analysis. The census tracts in Norfolk have different geographic charac-
teristics. Trees need fertile soil to be planted and space to grow. In some
census tracts there is less suitable space available to plant trees, our
analysis does not consider these factors, nor does it consider greenfield
development to create these spaces. However, we do consider the
City of Norfolk’s Tree Planting Program in our analysis. Specifically,
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our findings include considerations for extreme heat/direct sunlight
exposure in the city due to lack of tree canopies with respect to the
placement and mature canopies of trees that the program recently
planted. The placement and canopy size of these trees once matured
is shown in Fig. 11.

As a result of these considerations our analysis does consider the
future tree canopy state of several new neighborhoods that are more
affordable and tend to attract younger couples but currently lack
mature trees. In future work we expect to drill down on additional
confounding factors in more which may affect the distribution of
race/ethnicity, income, and education within the city with respect to
extreme heat/direct sunlight exposure from a lack of tree canopies.

4.5.4. Validity threats
Threats to internal and external validity affected our study. Threats

to internal validity arose when factors affected the dependent variables
without evaluators’ knowledge. It is possible that some flaws in the
implementation of our model could have affected the evaluation re-
sults. However, our approach used established libraries to clean and
wrangle the data, build the model, aggregate the results, and con-
duct statistical analyses. Furthermore, the source code passed internal
reviews (Spencer, 1978; Yu and Ohlund, 2010).

Threats to external validity occur when evaluation results cannot
be generalized. Specifically, our results cannot be generalized to nearby
areas or future time periods. Other cities in Virginia have residents with
different demographics and distributions of tree canopies. Our results
are specific to the City of Norfolk, using the identified datasets under
the specified assumptions and limitations. However, it is very important
to note that our approach, which yielded the model producing the
presented results can be applied to other cities given that relevant
datasets exist (Spencer, 1978; Yu and Ohlund, 2010).

5. Conclusion

In urban areas conditions can arise regularly during summer months
creating daily exposures to extreme heat and direct sunlight for res-
idents. Tree canopies provide shade as an effective way to reduce
urban heat and avoid exposure to extreme heat and direct sunlight.
We use a demographically representative agent-based model to under-
stand the extent to which, within Norfolk, VA, different demographics
of residents are (in)equitably shielded from extreme heat and direct
sunlight by tree canopies during a walk on a clear summer day.
The model also assesses the extent to which the city’s Tree Planting
Program will be effective in remediating any existing inequities. The
results showed that, currently, there are inequities for residents at (1)
different education levels, (2) different income levels, and (3) living in
different census tracts. Our model shows that the Tree Planting Program
reduces the distance residents walk in extreme heat/direct sunlight and
the identified demographic inequities. However, residents of the city
at lower income levels still experience statistically significantly more
extreme heat/direct sunlight exposure. In future work we will look to
add additional details that removes several of the identified limitations.
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Appendix A. Datasets used in the model

This appendix contains data and metadata associated with the pub-
licly available datasets used in our agent-based model.

A.1. American Communities Survey (ACS)

American Community Survey data used for modeling.

A.2. Address information resource in Norfolk, VA

Compilation of active and pending addresses in the Norfolk, VA.

A.3. Current significant trees in Norfolk, VA

The data collected on the current significant trees in Norfolk, VA.

A.4. Tree Planting Program in Norfolk, VA

The data collected on the Tree Planting Program in Norfolk, VA.

Appendix B. Agent-based model source code

This appendix contains the source code to generate demographically
representative agents for Norfolk, VA and the source for the agent-
based simulation of extreme heat/direct sunlight exposure for the
generated agents.

B.1. Source code for generating representative agents

This appendix contains the source code to generate demographi-
cally representative agents for Norfolk, VA using Iterative Proportional
Fitting (IPF).

B.2. Source code for agent-based model of extreme heat/direct sunlight
exposure in Norfolk, VA

This appendix contains the source code for the agent-based sim-
ulation of the distances residents traveled while enduring extreme
heat/direct sunlight exposure during a approx 5 km walk from their
homes to another location in Norfolk, VA.

Appendix C. Agent-based model results

This appendix contains the simulation output of the distances res-
idents traveled while enduring extreme heat/direct sunlight exposure
during a approx 5 km walk from their homes to another location in
Norfolk, VA.

Appendix D. Statistical analysis of agent-based model results

This appendix contains the aggregated simulation output at the

different demographic levels and the statistical analysis of the results.

https://data.mendeley.com/datasets/n4wyrj86vy
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Appendix E. Model overview design concepts, and details protocol

The Overview, Design concepts, and Details (ODD) protocol for the
model.
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