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ConceVE: Conceptual Modeling and Formal Validation for Everyone

ROSS GORE, SAIKOU DIALLO, and JOSE PADILLA, Old Dominion University

In this article, we present ConceVE, an approach for designing and validating models before they are
implemented in a computer simulation. The approach relies on (1) domain-specific languages for model
specification, (2) the Alloy Specification Language and its constraint solving analysis capabilities for ex-
ploring the state space of the model dynamically, and (3) supporting visualization tools to relay the results
of the analysis to the user. We show that our approach is applicable with generic languages such as the
Web Ontology Language as well as special XML-based languages such as the Coalition Battle Management
Language.
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1. INTRODUCTION

The process of developing, verifying, and validating models and simulations should be
straightforward. A conceptual model is designed by a Subject Matter Expert (SME)
from careful consideration of a problem and its domain. Then, it is realized via a
source code simulation through the implementation of interfaces, data structures, and
algorithms. Finally, the output of the simulation for a set of test cases is validated
against historical data or other trusted sources [Pace 2000; Robinson 2004, 2006; Page
et al. 1997].

Unfortunately, naively following this approach has pitfalls [Sargent 2005; Birta and
Özmizrak 1996]. The design of a model that appeared complete and robust can become
incoherent, incomplete, and potentially invalid during simulation implementation. The
exactness required by the tools that execute the simulation creates complexity that
might lead to the design of the conceptual model being hidden in irrelevant imple-
mentation details. Exploring alternative models and alternative modeling questions
becomes impossible because SMEs are unable to identify the respective modifications
that need to be made to the simulation [Law 2009].

An alternative approach is to attack the needed exactness head-on by employing a
precise and unambiguous notation for SMEs to describe their models. This approach,
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known as formal methods, has had a number of major successes but is rarely used in
practice due to three obstacles. First, the notation of formal specification languages
has a mathematical syntax that makes them unintuitive and potentially intimidating.
Second, these tools demand more investment of effort than can be expected from most
SMEs. Finally, the tools force attention to mathematical details that do not reflect to
SMEs the fundamental properties of their modeling question at hand [Kurshan 1997;
Harbola et al. 2012; Gajski et al. 2009; Woodcock et al. 2009; Findler and Mazur 1990].

We present our approach, Conceptual-modeling & Validation for Everyone (Con-
ceVE), which is a partial realization of our Modeling & Simulation System Devel-
opment Framework (MS-SDF) [Tolk et al. 2013]. ConceVE utilizes Domain-Specific
Languages (DSLs) for SMEs to provide a precise and expressive description of a model.
Then, it replaces conventional formal analysis with a fully automatic analysis that
gives immediate feedback to SMEs in familiar visualizations. ConceVE combines the
incrementality and immediacy of small-scale domain-specific model design with the
depth and clarity of traditional formal methods (e.g., model checking, theorem proving)
to create a new style of modeling and validation accessible to a new, more general,
audience.

2. THE PROPOSED APPROACH AND IMPLEMENTATION

The chief concern when developing a conceptual model is whether it and its resulting
implementation will be correct. This concern is addressed through verification and
validation (V&V) [Sargent 2005]. In previous work, we identified an approach to enable
simulation developers to efficiently find and correct errors made while implementing an
SME’s conceptual model [Gore et al. 2012b]. In this article, our focus is not simulation
implementation. Instead, we are concerned with providing an SME an efficient and
usable approach to determine if his or her conceptual model is designed correctly.

Historically, a combination of requirements gathering, conceptual modeling, formal
specification, and model checking has been employed to achieve this goal [Kurshan
1997]. However, the syntax of the tools that support these efforts is notoriously difficult
for SMEs to understand because it is mired in mathematical notation [Jackson 1999].
Efficiently working with these tools requires an expert understanding of predicate-logic
and set theory that is not feasible to expect from most SMEs.

To address this issue, we proposed the Modeling and Simulation System Devel-
opment Framework (MS-SDF), which unifies the Systems Engineering processes of
requirements capture, conceptual modeling, and V&V and extends them to Modeling
and Simulation (M&S). The hallmark of this approach is its breadth, its formalism,
and the ability of SMEs to leverage that formalism as they design, implement, and
validate models. Figure 1 provides an overview of the components within the MS-SDF.

MS-SDF users begin by specifying their domain knowledge, conceptual model, and
requirements for a system. Then, a simulation is generated from the conceptual model,
and both the model and the simulation are checked separately against the require-
ments. If the model or simulation is not consistent with or does not satisfy the re-
quirements, then the MS-SDF generates a counterexample depicting the inconsistency
in a manner the user can easily understand. Otherwise, the user is notified that the
model and simulation meet the specified requirements. Users refine their models incre-
mentally by considering the feedback from the MS-SDF, and the resulting simulation
reflects these updates.

ConceVE realizes the portion of the MS-SDF highlighted in blue. It employs (1)
DSLs to enable SMEs to specify the structure, operations, and requirements of a
conceptual model, (2) a translator to convert the SME’s model specification to an
formal model specification (DSL-To-Alloy Specification Language translation), (3)
analysis to validate the SME’s conceptual model (Alloy Analyzer), and (4) visualization

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 2, Article 12, Publication date: February 2014.



ConceVE: Conceptual Modeling and Formal Validation for Everyone 12:3

Fig. 1. MS-SDF overview.

Fig. 2. Implementation of ConveVE overview.

tools to present the results of the validation to the SME in an easy-to-understand and
familiar format (DSL visualization toolsets). The tools and the interactions within
ConceVE that achieve these capabilities and realize the highlighted components in
Figure 1 are shown in Figure 2.

The novelty of ConceVE lies in the use of DSLs, their supporting visualizations,
and the formal method toolset, Alloy. DSLs are an ideal user interface. They provide
a small, declarative language with expressive power that is shaped for a particular
problem domain. By taking such a specific approach to problem solving, they achieve
a strict separation of concerns of the domain semantics of the problem at hand from
the program-specific semantics of specification [Kurtev et al. 2006]. Furthermore, most
DSLs come with visualization support to help SMEs as they develop programs [Van

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 2, Article 12, Publication date: February 2014.



12:4 R. Gore et al.

Deursen et al. 2000; Mernik et al. 2005]. By leveraging these toolsets for visualization,
ConceVE has the ability to return the results of formal methods analysis to SMEs in a
familiar format.

Alloy also offers a unique advantage that makes it ideal for ConceVE. Unlike tradi-
tional formal methods, Alloy analysis is not complete (infinite). For a specified model,
the Alloy Analyzer only considers a finite space of cases. This significantly improves
the efficiency of the validation analysis and provides users with immediate feedback.
Furthermore, the space of cases examined is on the order of billions and thus offers
a degree of coverage than is unattainable in testing. Combined in the novel manner
depicted in Figure 2, the capabilities of DSLs and Alloy create a more robust means for
SMEs to design and validate domain-specific models than existing alternatives. Next,
we review background material for the ConceVE components.

3. BACKGROUND

In this section, we provide a summary of the underlying technologies in ConceVE.
First we review DSLs and then we discuss several different formal methods, including
formal specification, model checking, theorem proving, and the constraint solver Alloy.

3.1. Domain-Specific Languages

DSLs are small languages, targeted toward a particular discipline, that offer a sepa-
ration of concerns. Achieving a separation of concerns allows users to distinguish the
semantics of the problem domain at hand from the programming-specific semantics.
This enables users tasked with a particular programming problem to encounter less of a
learning curve and express more concise solutions with a DSL as opposed to a General-
purpose Programming Language (GPL) [Van Deursen et al. 2000; Mernik et al. 2005].
Furthermore, studies show that the communication between domain experts improves
and less code maintenance is needed when DSLs are employed in practice [North et al.
2006; Visser 2008].

The strong relationship between DSLs and conceptual models makes a DSL the best
syntax for a user to specify his or her conceptual model. In Kurtev et al. [2006], a DSL is
defined as “a set of coordinated [conceptual] models.” We support this definition. DSLs
have a clearly identified, concrete problem domain. In contrast, GPLs cover multiple
domains. Programs in a DSL represent concrete states of affairs in this domain; they
are models. A conceptualization of the domain is an abstract entity that captures the
commonalities among the possible state of affairs. It introduces the basic abstractions
of the domain and their mutual relations. Once such an abstract entity is explicitly
represented by the user in the syntax of the DSL, the conceptual model is realized.

The eXtensible Markup Language (XML) provides a platform to develop DSLs. As
a result, there has been a host of M&S-related XML-based DSLs that have been suc-
cessfully developed to address problems in numerous disciplines [McGinnis and Ustun
2009; Chandrasekaran et al. 2002; Brutzman et al. 2002]. ConceVE looks to combine
the extensibility and flexibility of XML with the consistency and satisfiability results
created by employing formal methods.

3.2. Formal Methods

Employing formal methods in the field of M&S validation is not new. In safety-critical
software, where billions of dollars and millions of lives depend on correctness, formal
methods are routinely applied [Bowen and Stavridou 1993]. This requires specifying
a model in a formal language and using the properties of that language to ensure
that every statement of the model is either part of the language or can be produced
by the language [Tolk et al. 2013]. The term formal methods encompasses a family of
approaches that sometimes refer to the tools, processes, or languages used in support

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 2, Article 12, Publication date: February 2014.



ConceVE: Conceptual Modeling and Formal Validation for Everyone 12:5

of validation [Tofts and Birtwistle 1998; Aldini et al. 2001]. In this section, we review
several relevant formal methods that facilitate an understanding of our approach.

3.2.1. Formal Specification. Formal specification is the process of describing a system
and its desired properties using a language with a mathematically defined syntax and
semantics. Some formal specification languages such as Z [Spivey 1988], VDM [Jones
1986], and Larch [Guttag et al. 1993] focus on specifying the behavior of sequential
systems, where states are described in mathematical structures such as sets, rela-
tions, and functions. Other methods such as CSP [Hoare 1978], CCS [Milner 1982],
Statecharts [Harel 1987], Temporal Logic [Lamport 1994], and I/O automata [Lynch
and Tuttle 1987] focus on specifying system behaviors in terms of sequences, trees,
or partial orders of events. Common to all of these methods is the use of the math-
ematical concepts of abstraction and composition. Unfortunately, this syntax makes
specification languages intimidating and unintuitive to most SMEs.

3.2.2. Model Checking and Theorem Proving. Model checking is an automated means to
check a formal specification for correctness. It requires a user to formulate a property
as a predicate over variable values. Then, it automatically checks to see if the property
holds in the specification. For example, a property stipulating that a variable x always
be positive and that a variable y always be strictly smaller than x can be formulated
as x > 0 ∧ y < x [Clarke et al. 2000].

Two distinct approaches using properties are used to assess correctness: (1) pre/post
condition and (2) invariant assertion.

(1) Pre/post condition approaches formulate the correctness problem as the relation-
ship between a formula that is assumed to hold at the beginning of program ex-
ecution, denoted �PRE, and a formula that should hold at the end of program
execution, denoted �POST. Assessing the correctness of the program involves de-
termining whether the semantics of the program establishes �POST given �PRE.

(2) Invariant assertion-based approaches define the correctness of a simulation by
verifying that a user-specified Boolean formula, �INV, holds throughout simulation
execution.

These approaches can be performed within minutes for small- and intermediate-sized
model specifications. However, for large specifications, analysis can take hours and even
days, significantly limiting the utility of model checkers [Burch et al. 1992]. Theorem
proving can be a more effective means to validate a large model specification. Theorem
provers enable a system and its desired properties to be specified in mathematical
logic that defines a set of axioms and inference rules. Theorem proving is defined as
the process of finding a proof of a property from the axioms of the system. The steps
in the proof are derived from definitions and intermediate lemmas derived from the
logics axioms and rules [Bonacina 2010].

However, theorem provers are interactive, not automatic. Since the user is part of the
theorem proving process, the proof construction is slow and often error prone. However,
in the process of finding the proof, invaluable user insight into the specification can be
gained.

3.2.3. The Alloy Specification Language and Analyzer. The Alloy Specification Language
(ASL) is a language based on first-order logic for expressing behavioral constraints. Al-
loy treats relations as first-class citizens and uses relational composition as a powerful
operator to combine entities. The essential constructs of Alloy are as follows [Jackson
2006]:

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 2, Article 12, Publication date: February 2014.



12:6 R. Gore et al.

—Signatures: Signatures reflect a collection of relations (called fields) and a set of
constraints on their values. A signature may inherit fields and constraints from
other signatures.

—Predicates: Predicates capture behavior constraints through general formulas.
—Facts: Facts are formulas that take no arguments and impose global constraints on

the relations and the objects.
—Assertions: Assertions specify intended properties within a model.

The Alloy Analyzer is a constraint solver. Given a model composed of signatures,
predicates, and facts and one or more specified assertions, it performs two types of
analyses: (1) model instantiation and (2) counterexample generation [Jackson 2006].

(1) Model instantiation attempts to generate a version of a model specified in ASL
that satisfies all of the predicates and facts given by the user. In general, model
instantiation helps catch errors where the user has overspecified the model, by
reporting, contrary to the user intent, when no model instance satisfying all of the
specified predicates and facts exists.

(2) Counterexample generation catches errors of underconstraint by showing model
instances that are acceptable given the specified scope, structure, operation, and
preconditions of the model but that violate a user-specified assertion.

Together, the model instantiation and counterexample generation work within
ConceVE to enable an incremental verification process. The user starts with a minimal
conceptual model and performs a variety of instantiations to detect overconstraint. In-
tended consequences are formulated, with counterexamples suggesting additional con-
straints to be added to the specification. This process, especially visualizing it through
DSL toolsets, helps produce a conceptual model that has only desired properties.

3.3. Related Research

Effectively employing formal methods in the conceptual modeling process is not a new
problem. Here, we review existing work in this research area and identify those char-
acteristics of ConceVE that make it novel. Recall that formal methods are mired in
mathematical syntax and thus intimidating and difficult for most users. As a result,
several different structures in a variety of domains have been employed as interface to
formal methods for users. In the field of genetics, where large datasets make simulation
expensive, researchers combined state transition graphs derived from qualitative sim-
ulation with model checking to create a more efficient mechanism to derive insight into
conceptual models [Batt et al. 2005]. Similarly, in biology and biochemical simulations,
query languages have been used to enable users to determine if a conceptual model
satisfies a given property [Park et al. 2002]. Queries have also been combined with
graph grammars to specify and check properties in control systems [Copstein et al.
2000].

In related work, a structure protocol language was successfully mapped to the High-
Level Architecture (HLA) interoperability standard. The structured protocol language
enables users to detect anomalies, race conditions, and deadlocks within component
integration [Allen et al. 1998]. Researchers working on a similar problem—the com-
position of Web services,—have debated the benefits and drawbacks of using more
established formalisms (i.e., Pi calculus and Petri nets) to express queries and receive
feedback about anomalies, race conditions, and deadlocks [Van der Aalst 2005; Ter
Beek et al. 2007].

ConceVE differs from each of these previous efforts in terms of (1) its breadth of scope,
(2) the immediacy of its analysis (timeliness of response time), and (3) its emphasis
on visualization. Unlike previous domain-specific research efforts, ConceVE (and the

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 2, Article 12, Publication date: February 2014.
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MS-SDF) represents a framework, not a tool. Furthermore, this tool is not domain
specific; it can be applied to any problem. In addition, previous efforts have employed
traditional model checkers where user response time is measured in minutes, hours,
and sometimes days. However, ConceVE takes advantage of the advances in finite
space constraint solving encapsulated within Alloy. As a result, user response time
is typically measured in seconds. Finally, ConceVE emphasizes visualization of model
checking output through domain-specific tools. This is significant. Researchers have
found that creating a model checking output interface with a low barrier of entry is
just as important to practitioners using model checkers as the language used to express
a formal specification [Davies et al. 2006].

4. CASE STUDIES

We conducted two case studies tp evaluate ConceVE, each featuring a different and
established DSL. The first case study features the Web Ontology Language (OWL) used
to process data on the Semantic Web. In the second case study, the Coalition Battle
Management Language (C-BML) for command and control of military operations is
featured. Each case study showcases the benefits of developing models in ConceVE as
opposed to requiring users to directly interact with formal methods.

4.1. Web Ontology Language

The Semantic Web extends the current Web by giving content a well-defined meaning
and enabling cooperation. The Resource Description Framework (RDF) is a founda-
tional technology for processing Semantic Web metadata. RDF descriptions provide a
simple ontology system to support the exchange of knowledge via the RDF Schema,
which consists of primitive properties and type description constructs [Antoniou and
Harmelen 2009].

The OWL language has extended RDF by providing (1) richer constructors for build-
ing type (class) and property descriptions and (2) capabilities to ensure that those con-
structs adhere to specified axioms (statements). These three constructs (classes, prop-
erties, and statements) interact according to the following [Antoniou and Harmelen
2009]:

—Classes are interpreted as sets of objects that represent the individuals in the domain
of discourse.

—Properties are binary relations that link classes and statements, and are interpreted
as sets of tuples, which are the subsets of the cross product of the objects in the
domain of discourse.

—Statements reflect facts about properties that classes hold. Statements are always
true.

The case study that follows features OWL as a DSL used to describe the relation-
ships of classes within a user’s conceptual model. The utility of describing simulation
conceptual models using OWL has been established by previous research [Miller et al.
2004]. We chose to employ OWL in this case study because of its applicability to M&S,
widespread popularity, and structure. Although our algorithms only describe how to
translate a conceptual model described in OWL to Alloy, it also applies to any conceptual
model expressed in a syntax that can also be translated into OWL. The implementation
of our algorithms is available [Gore et al. 2012a].

4.1.1. Parsing and Translating OWL. ConceVE employs an XML parser to partition an
OWL 2.0 document into classes, properties, and statements [Motik et al. 2009]. This
parser is modeled after existing OWL Application Programming Interfaces [Knublauch
2006; Horridge et al. 2007]. Once parsed, each class, property, and statement is
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ALGORITHM 1: OWL-To-Alloy—The main function used to convert OWL to Alloy.
Input: C, P, S—the respective set C of classes, a set P of properties, and a set S of statements.
Output: �—an ASL model.
begin

for each c ∈ C do
� ← � + GenAlloySig(c, S);

end
for each s ∈ S do

if s.predicate.name = “disjointWith” then
if s.subject.subClassOf �= s.object.subClassOf then

� ← �+ “pred {no c1:” +s.subject.name+“, c2:” +s.object.name+ “| c1 = c2}”;
end

end
if s.predicate.name = “complementOf” then

� ← +“pred {”+s.subject.name+ “=” +C − s.object.name+“ }”;
end

end
return �;

end

converted into a signature, predicate, fact, or assertion in the ASL. This conversion
is performed through Algorithm 1, OWL-To-Alloy. Algorithm 1 converts the inputs
classes (denoted as C), properties (denoted as P), and statements (denoted as S) into
an ASL model.

OWL-To-Alloy begins by initializing �, a model written in ASL. Then, for each class
c, there will be a corresponding signature of the same name added to � constructed by
applying GenAlloySig(c, S), which is described later in this section.

Once GenAlloySig(c, S) has been applied to each class, the statements parsed
from the OWL document are considered. An OWL statement s has a name (s.name)
and is composed of three segments (s.subject, s.predicate, and s.object). Each seg-
ment has a name (i.e., s.subject.name) and is a descendant from another OWL class
(s.object.subClassOf ). The second half of Algorithm 1 ensures that classes that are
specified to be disjoint from and complements of each other are translated and encoded
correctly in the ASL model �.

Recall that OWL-To-Alloy uses the algorithm GenAlloySig to generate a signature
for a class c parsed from an OWL document. It begins by producing a signature that is
named after the input class c. Then, GenAlloySig determines whether class c is subclass
of another by checking if c.subClassOf is not empty. If c is a subclass of another, then
the algorithm determines the relationship between the classes.

GenAlloySig also encodes OWL properties into the signature for a class c. This is
achieved through two helper functions: domain(p, S) and range(p, S). For each property
p, domain(p, S) is used to determine whether c is its domain. If it is, then the range(p, S)
algorithm looks up the range of p.

The subalgorithms domain(p, S) and range(p, S) are very similar in structure. In
Algorithm 3, we describe domain(p, S). Given the description of domain(p, S), the pseu-
docode comprising range(p, S) can be easily derived. domain(p, S) is used to obtain the
domain of the property p. For a property p, if there is a statement s that meets the
specified conditions, then the name of s.object is considered to be the domain of p.
Otherwise, the domain of p’s parent is also its domain.

Algorithms 1 through 3 work in combination to translate an OWL document into an
Alloy model �. In the next section, we will apply these algorithms in a case study that
elucidates the validation capabilities that an SME gains by employing ConceVE.
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ALGORITHM 2: GenAlloySig—The helper function used to generate Alloy signatures.
Input: c, S, P—a class c, a set S of Statements and a set P of Properties.
Output: �—a signature to an ASL model.
begin

σ ← “sig” +c.name;
if c.subclassOf �= ω then

σ ← σ+ “extends”+c.subClassOf.name;
σ ← σ+ “{”;
for each p ∈ P do

if domain(p, S) = c.name then
σ ← σ + p.name+ “:”+range(p, S);
σ ← σ+ “}”;

end
end

end
return σ ;

end

ALGORITHM 3: domain—A subalgorithm function used to obtain the domain of p.
Input: p a property p, a set S of Statements.
Output: �—the domain of p.
begin

if s.subject = p ∧ s.predicate =“domain” then
p.domain ← s.object.name;

end
else

p.domain ← domain(parent(p), S);
end
return p.domain;

end

4.1.2. An Erroneous OWL Ontology. Existing tools for ontology reasoning struggle to
provide rich answers that refer to a particular ontology instantiation as opposed to an
ontology as a whole [Golbreich 2004]. For example, one of the most advanced ontological
reasoners, the OWL Instance Store (iS), only supports a very limited form of answering
instance retrieval queries with respect to an ontology and a set of axioms asserting
class-instance relationships. Although the iS able to process much larger numbers of
individuals, it cannot assert that OWL instance x is related via OWL property p to
OWL instance y [Bechhofer et al. 2005]. This analysis is straightforward for Alloy and
thus ConceVE [Jackson 1999, 2006]. Here, we demonstrate (1) how the lack of any
validation capability is problematic and (2) how it is addressed with ConceVE.

An erroneous OWL ontology describing Mammals is shown in Figure 3. Recall that in
this case study, OWL is being used as a DSL to describe the relationships of instances
and classes within a user’s conceptual model. There are four classes defined: Mammal,
Male, Doe, and Female. Mammal is the base class, Male and Female are disjoint sub-
classes of the base class, and Doe is a subclass of Female. There are also four properties
in the ontology: hasFather, hasParent, hasChild, and femaleHasFather. The properties
hasParent and hasChild are inverses of each other, the property hasFather is a sub-
property of hasParent, and femaleHasFather is a subproperty of hasFather. Applying
Algorithms 1 through 3 to this ontology yields the Alloy model shown in Figure 4.
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Fig. 3. An erroneous OWL ontology.

Fig. 4. An Alloy translation of Figure 3.
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ConceVE generates four signatures and two predicates from the OWL ontology in
Figure 3. Female and Male both extend from the Mammal signature, and Doe extends
from the Female signature. Furthermore, the four properties in the OWL Document are
included within the Alloy model. It is important to note that this entails converting the
OWL keywords (inverseOf and subPropertyOf) into Alloy predicates. The former is
used to encode that hasParent is the inverse of hasChild, whereas the latter reflects
that the range of hasFather is a subset of hasParents and the range of femaleHasFather
is a subset of hasFather.

The fault in the ontology lies in the description of the property femaleHasFather. By
making Male the range of hasFather and Doe the range of femaleHasFather, the SME
has created a subproperty that applies to nothing; the two ranges (Male and Doe) are
always completely disjoint!

This type of analysis is at the foundation of formal methods such as those employed
in ConceVE. ConceVE immediately identifies the disjoint ranges and reports them to
the user via the Protege plugin OntoViz [Sintek 2003]. OntoViz is capable of depicting
the error detected by Alloy as a Venn diagram revealing the complete lack of over-
lap between Male and Doe. Through this familiar visualization, the user can correct
the range of the femaleHasFather property to Male. Once correctly modified, ConceVE
offers two capabilities that increase the users confidence: (1) the Venn diagram regard-
ing the two disjoint sets no longer appears, and (2) a visualization of a possible model
instantiation showing the application of the hasFather relation and femaleHasFather
relation is provided.

4.2. Coalition Battle Management Language

C-BML is an unambiguous language used to (1) command and control forces and
equipment conducting military operations and (2) provide for situational awareness
and a shared, common operational picture. C-BML employs XML to define rigorous,
well-documented, situational contexts, mission tasks, and entity reports that reflect a
subset of the Command & Control Information Exchange Data Model (C2IEDM) [Tolk
et al. 2007].

There is a need to check C-BML documents to determine if tasks specified in missions
are contradictory to military doctrine or can lead to failure [Tolk et al. 2006]. However,
this need has not been addressed. In what follows, we present a solution to this problem
with ConceVE.

4.2.1. Parsing and Translating C-BML. ConceVE employs an XML parser to partition a
C-BML document into its three components: contexts, tasks and reports. Once parsed
from C-BML, each context, task, and report is converted into a formal specification in
ASL. This conversion is performed through the application of a series of algorithms.
The first algorithm, CBML-To-Alloy, marshals the inputs (contexts denoted as C, tasks
denoted as T , and reports denoted as R) into a series of subalgorithms that generate
ASL signatures and predicates to form an Alloy model �.

CBML-To-Alloy begins by calling Context-To-Alloy for each context included in the
C-BML document. Context-To-Alloy takes each component of a C-BML context element
and translates it into an Alloy signature with the appropriate attributes. The algorithm
checks for every possible element in a C-BML context component; if the element exists,
it is translated into an attribute within the Alloy signature.

Once Context-To-Alloy has encoded every C-BML context, CBML-To-Alloy employs
Task-To-Alloy to translate each C-BML task into an Alloy predicate. First, the
algorithm creates a skeleton for the Alloy predicate. Then, it generates a check to
ensure that the predicate is only applied when the task should be performed, and it

ACM Transactions on Modeling and Computer Simulation, Vol. 24, No. 2, Article 12, Publication date: February 2014.



12:12 R. Gore et al.

ALGORITHM 4: CBML-To-Alloy—The main function used to convert C-BML to Alloy.
Input: C, T , R—the respective set C of C-BML contexts, a set T of C-BML tasks, and a set R

of C-BML reports.
Output: �—an ASL model.
begin

for each c ∈ C do
� ← � + Context-To-Alloy(C);

end
for each t ∈ T do

� ← � + Task-To-Alloy(T);
end
for each r ∈ R do

� ← � + Report-To-Alloy(R);
end
return �;

end

creates an action that updates the state of (1) the tasked entity, (2) the referred-to
area, and (3) the entity referred to in the task.

Finally, each report is processed using the function Report-To-Alloy. Each report
serves as an axiom that gives the initial position and end position of units during the
mission. These reports are translated into predicates that are enforced as facts for the
initial and end state of the Alloy model �.

Algorithms 4 through 7 work in combination to translate a C-BML document into an
Alloy model �. In the next section, we will apply these algorithms in a case study that
elucidates how ConceVE enables validation in C-BML without exposing SMEs directly
to formal methods.

4.2.2. Multinational Company Scenario. The Commanding Officer and Multinational Com-
pany C-BML plan describes the steps required to take possession of Oscar 1, a house
surrounded by an enemy force. The steps required to complete the mission are:

(1) Move to a secure area and place a device monitoring Oscar 1.
(2) Move along a discrete path to a location close to Oscar 1 to settle in for an assault.
(3) Assault the enemies at Oscar 1, and seize possession of the house.
(4) Fall north of Oscar 1, and install a monitoring device to the North, West, and East

of the seized location.

If steps 1 through 4 are completed in order successfully, the invasion is complete and
the Multinational Company mission is considered successful. If the enemy ENI forces
overtake the company, then the mission is considered a failure. The model is used by
military organizations to explore various Rules Of Engagement (ROEs) and resulting
casualty scenarios for the Multinational Company.

The C-BML document specifies each of the entities included in the scenario: the con-
stituents of the Multinational Company (U.S. and French Platoon), Oscar 1, the phase
line, the enemy forces, and the environment (forests, hills, etc). Then, the location and
associations between these entities are flushed out via reports in C-BML. Finally, each
step within the mission is expressed in C-BML tasks. Using Algorithms 4 through 7,
the C-BML scenario can be translated into an Alloy model, and intricacies within
the mission can be explored. For example, in this case study, we explore how ROEs
affect the success of the Multinational Company. ROEs are the directives issued by
competent military authority that delineate the circumstances and limitations under
which military forces will initiate and/or continue combat engagement with other forces
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ALGORITHM 5: Context-To-Alloy—The function used to convert C-BML contexts to Alloy sig-
natures.
Input: C—a set of C-BML contexts.
Output: γ —a subset of an ASL model.
begin

for each c ∈ C do
γ ← γ + “one sig” + c.name + “extends” + c.supportingT ype + “ {”;
γ ← γ + “oid:” + c.oid;
if c.commandFunctionIndicatorCode �= ω then

γ ← γ + “commandFunctionIndicatorCode:” +;
c.commandFunctionIndicatorCode;

end
if c.serviceCode �= ω then

γ ← γ + “serviceCode:” + c.serviceCode;
end
if c.categoryCode �= ω then

γ ← γ + “categoryCode:” + c.categoryCode;
end
if c.armCategoryCode �= ω then

γ ← γ + “armCategoryCode:” + c.armCategoryCode;
end
if c.decoyIndicatorCode �= ω then

γ ← γ + “decoyIndicatorCode:” + c.decoyIndicatorCode;
end
if c.subCategoryCode �= ω then

γ ← γ + “subCategoryCode:” + c.subCategoryCode;
end
if c.sizeCode �= ω then

γ ← γ + “sizeCode:” + c.sizeCode;
end
γ ← γ + “}”;

end
end

ALGORITHM 6: Task-To-Alloy—The function used to convert C-BML tasks to Alloy predicates.
Input: T —a set of CBML tasks.
Output: τ—a subset of an ASL model.
begin

for each t ∈ T do
ρ ← ρ + “pred TASK ” + t.name + “[s, s’: State] {”;
τ ← τ + “s.current” + t.name + “implies s’.” + t.name + “ AREA = s.” + t.name +
“ AREA - s.” + t.taskeeWho;
τ ← τ + “}”;

end
end

encountered. These directives are intended to reduce the chance of friendly fire inci-
dents and recognize international law regarding the conduct of war, particularly the
need to protect civilians.

However, without validation, these restrictions can limit the ability of commanders
and companies to accomplish mission plans. Using ConceVE, SMEs can explore if all
of the tasks within the mission can be carried out if the Multinational Company never
uses force against the Enemy ENI force. Figure 5 reflects output from Alloy, visualized
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Fig. 5. A ConceVE counterexample generated by Alloy, visualized by a C-BML support tool.

ALGORITHM 7: Report-To-Alloy—The function used to convert C-BML reports to Alloy predi-
cates.
Input: R—an ordered set of reports.
Output: ρ—a subset of an ASL model.
begin

τ ← τ + “fact initialState{ init[first] }”;
τ ← τ + “pred init [s, s’: State] {”;
for each r ∈ R do

ρ ← ρ + “s.” + r.reportedWhoRef + “.coordinates + = ”;
for each point ∈ r.location do

ρ ← ρ + “Lat[”+ point.latitude + “] → Long[” + point.longitude + “]”;
end

end
ρ ← ρ + “}”;

end

by a C-BML support tool, which reveals that all of the tasks cannot be carried out if
the Multinational Company does not use force. The Multinational Company (shown in
blue) advances toward the Enemy ENI force but cannot assault the enemy and seize
possession of the house. The company reaches an impasse where they surround the
enemy but cannot progress further.

These types of subtleties in mission planning are notoriously difficult to explore at
the scenario specification level but incredibly important to achieve success [Spiegel
et al. 2005]. However, employing ConceVE enables (1) different ROEs to be tested at
the specification level and (2) users to determine exactly if and how the ROEs inhibit
or guarantee mission success. This is a crucial step in enabling SMEs in military do-
mains, regardless of their familiarity with formal methods, to produce valid conceptual
models.
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5. CONCLUSION

The process of developing, verifying, and validating models and simulations should be
straightforward. Unfortunately, following conventional development approaches can
render a model design that appeared complete and robust into an incomplete, inco-
herent, and invalid simulation during implementation. An alternative approach is to
attack the needed exactness head-on by employing formal methods for SMEs to describe
their models. However, this approach is rarely used in practice due to the intimidating
syntax and unfamiliar semantics of model checkers and theorem provers.

As a result, we developed the MS-SDF. Here, we implemented a critical portion
of the MS-SDF via ConceVE. ConceVE leverages DSLs for model specification, their
supporting visualization mechanisms, and the Alloy toolset to realize an approach
to developing valid and verifiable conceptual models that is accessible to all SMEs
regardless of their familiarity with formal methods. Our claim that ConceVE makes
formal methods more usable for SMEs are based on its ability to provide domain-specific
wrappers around the ASL and the output of the Alloy Analyzer. Although this is not a
statistical evaluation or a user study, the utility of DSLs is well established. In future
work, we will further corroborate this claim with more quantitative user evaluations.

ConceVE is constrained by the underlying technologies used to support DSLs and
model checking. Within ConceVE, DSL to Alloy Specification translation is DSL
specific—a specific translator must be developed for each DSL. Currently, the only
DSLs that ConceVE supports are OWL and CBML. This is a limitation of ConceVE
that our future work will look to address. We have established that DSL to Alloy Spec-
ification translation is possible, and in the future, we will make it accessible to more
conceptual modeling DSLs.

In terms of its model-checking capabilities, ConceVE is constrained by the Alloy
Analyzer. Analysis within the Alloy Analyzer is not complete; it only examines a finite
space of test cases. However, the space of test cases explored is huge, on the order
of billions, and it therefore offers a degree of coverage unattainable in testing. In the
future, we will continue to realize the MS-SDF by adding the ability to automatically
generate valid simulations from specified conceptual models.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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