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Abstract The body of knowledge related to modeling and simulation (M&S) comes from

a variety of constituents: (1) practitioners and users, (2) tool developers and (3) theorists

and methodologists. Previous work has shown that categorizing M&S as a concentration in

an existing, broader disciple is inadequate because it does not provide a uniform basis for

research and education across all institutions. This article presents an approach for the

classification of M&S as a scientific discipline and a framework for ensuing analysis. The

novelty of the approach lies in its application of machine learning classification to docu-

ments containing unstructured text (e.g. publications, funding solicitations) from a variety

of established and emerging disciplines related to modeling and simulation. We demon-

strate that machine learning classification models can be trained to accurately separate

M&S from related disciplines using the abstracts of well-index research publication

repositories. We evaluate the accuracy of our trained classifiers using cross-fold validation.

Then, we demonstrate that our trained classifiers can effectively identify a set of previously

unseen M&S funding solicitations and grant proposals. Finally, we use our approach to

uncover new funding trends in M&S and support a uniform basis for education and

research.
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Introduction

There has been significant work in identifying scientific disciplines and the changes within

them (Vinkler 1988; Mayr 2004; Glenisson et al. 2005; Herrera et al. 2010; Bourke and

Butler 1998; Vessey et al. 2005; Katz and Hicks 1995; Börner et al. 2012; Wallace et al.

2012; Searls 2010; Kaur et al. 2012; Ioannidis 2006). While these efforts have been

fruitful, they have generally focused on: (1) structured data and (2) the relationships among

research publication authorship and citations.

Furthermore, the study of emerging disciplines, such as modeling and simulation

(M&S), have not focused on identification. Instead, researchers have focused on analyzing

the content of the emerging discipline to elucidate the contributions of concepts, rela-

tionships and information in established disciplines (Hinze 1994). In addition, there are

specific difficulties associated with identifying content that reflects M&S as a discipline

versus content that uses modeling and/or simulation as a methodological approach (i.e.

engineering, physics, astronomy, atmospheric sciences).

Here, we refer to an emerging discipline as one which integrates some subset of the

following from two or more bodies of knowledge: (1) perspectives, concepts and theories,

(2) tools and techniques and (3) information and data (Salter and Hearn 1997; Aboelela

et al. 2007). In contrast, an established discipline is an area of specialization that focuses

on one narrow topic (Salter and Hearn 1997; Aboelela et al. 2007). For example, com-

putational biology is not an established discipline because it is not a specialization of a

single topic. Instead, it is an emerging discipline because it combines concepts of biology

and computer science but is separate and identifiable from both.

We address all of these issues with a flexible framework to classify M&S from other

emerging and established disciplines. The framework leverages machine learning to

construct classification models. The classification models are trained on research publi-

cations to identify M&S as well as ten other scientific disciplines. Once trained, the

classification models are deployed on new data sets to classify content in each discipline.

The performance of the models is evaluated using established measures to demonstrate

their effectiveness. Finally, newly identified M&S content is analyzed to gather new

insight into the funding of the discipline by the National Science Foundation (NSF) and

National Institute of Health (NIH).

A methodology to classify and analyze M&S is needed. Previous work has shown that

categorizing M&S as a concentration in an existing, broader disciple is inadequate. This

labeling does not provide a uniform basis for research and education across all educational

institutions (Balci 2001; Sarjoughian and Zeigler 2001; Crookall 2010). The analysis based

on the M&S content our approach classifies supports the development of such a basis.

Ultimately, our work has four main contributions:

1. We present a formal definition of the discipline classification problem so that the

effectiveness of our framework can be evaluated. This problem definition is adapted

from problem of text classification in the field of machine learning (Sebastiani 2002).

2. We demonstrate how to use machine learning techniques to build and train a classifier

that can classify documents related to M&S from other established disciplines (i.e.

medicine) as well as emerging ones (i.e. computational biology).

3. We apply our trained classifiers to data sets of funding solicitations and grants from

NSF and NIH. We show that our algorithm can effectively identify the M&S funding

solicitations and grant abstracts.
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4. We demonstrate the utility of our framework by applying it to gather new insight into

the funding of M&S by the National Science Foundation (NSF) and National Institute

of Health (NIH).

Data and problem definition

A number of different data sets are used in our study. First, we describe each data set. Then

we formally define the discipline classification problem.

Data

ACM data set

The ACM data set is obtained by collecting the abstracts from conference proceedings and

print periodicals from 1960 to 2011 (White 2001). The publications in the ACM data set

span several disciplines: modeling and simulation, computer science, computer engi-

neering, electrical engineering and systems engineering.

The discipline of a particular publication in the ACM data set is determined by the title

of the conference or periodical in which it appears. For example, a publication in the

Winter Simulation Conference pertains to the discipline of modeling and simulation.

Similarly, a publication in the Transactions on Programming Languages pertains to the

discipline computer science. In most cases the mapping between the periodical and dis-

cipline is straightforward. However, in some cases it is possible that reasonable people

could disagree. In ambiguous cases we chose to classify periodicals and their publications

as contributors to the discipline of computer science. We made this choice because

computer science is seen as the overarching discipline of the ACM.

The ACM data set consists of 213,725 abstracts which are mapped to the disciplines as

follows: computer science (160,293), modeling and simulation (12,823), computer engi-

neering (4247), electrical engineering (14,961) and systems engineering (19,235).

PLoS data set

The PLoS data set is formed by collecting the all abstracts of the six domain specific Public

Library of Science periodicals (Jahn et al. 2013). The domain specific PLoS periodicals

are: PLoS Biology, PLoS Medicine, PLoS Computational Biology, PLoS Genetics, PLoS

Pathogens, PLoS Neglected Tropical Diseases.

The inception date of these journals varies from 2003 to 2005, but each has continued to

be published through 2013. The six disciplines covered in these periodicals match their

respective titles: biology, medicine, computational biology, genetics, pathogens and dis-

ease. The disciple of a particular publication is determined by the journal in which it is

published.

The PLoS data set consists of 13,095 abstracts which are mapped to the disciplines as

follows: biology (1334), medicine (832), computational biology (2976), genetics (3041),

pathogens (3348) and disease (1564).
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National science foundation data set

The NSF data set is formed by collecting the abstracts from solicitations and funded grants

during 1990–2003 from the following divisions: (1) Atmospheric Sciences, (2) Computing

and Communication Foundations, (3) Civil and Mechanical Systems, (4) Chemical and

Transport Systems, (5) Design and Manufacturing Innovation, (6) Materials Research, (7)

Mathematical Sciences and (8) Undergraduate Education (Pazzani and Meyers 2003). The

discipline these abstracts are classified by is discussed in the Methodology Section. The

NSF data set consists of 961 abstracts.

National Institute of Health data set

The NIH data set is formed by collecting the abstracts from solicitations and funded grants

during 1990–2012 from the following divisional institutions: (1) National Heart, Lung and

Blood Institute, (2) National Library of Medicine, (3) National Institute of Allergy &

Infectious Diseases, (4) National Institute of Diabetes, Digestive & Kidney Diseases, (5)

National Eye Institute, (6) National Institute of General Medical Sciences, (7) National

Cancer Institute, (8) National Institute of Dental & Craniofacial Research (NIH 2003). The

discipline these abstracts are classified by is discussed in the Methodology Section. The

NIH data set consists of 6837 abstracts.

Discipline classification problem definition

Discipline categorization focuses on assigning documents to predefined disciplines. It is an

application of text classification—the study of classifying any text-based document into a

set of predefined categories.

Applying text classification to solve categorization problems is now new. Text classi-

fication techniques have been applied to: (1) spam filtering to discern e-mail spam mes-

sages from legitimate emails (Wang and PAN 2005), (2) email routing which sends an

email sent to a general address to a specific address based on the topic (Argamon et al.

1998), (3) language identification to automatically determining the language of a text

(Rajman and Besançon 1998), (4) story genre classification to automatically determining

the genre of a text (Lin et al. 2009; Xiao et al. 2009), (5) readability assessment to quantify

the degree of readability of a text based on age groups or reader type (Miltsakaki and

Troutt 2008), (6) determining the sentiment of a speaker or a writer with respect to a given

topic (Liu and Zhang 2012), (7) article triage which selects articles that are relevant to a

specified topic or annotation (Wei et al. 2012).

Furthermore, there have been several studies related to the automated categorization of

bibliometric data. Using graphical navigation tools researchers have created bibliometric

maps of science to answer policy-related question (Noyons 2001). In addition mapping and

citation analysis have been combined to evaluate the research scope and performance of

the academic institutions and research centers (Nederhof and Noyons 1992; Noyons et al.

1999). The success of these efforts have motivated the development of bibliometric

standards to improve the reliability of bibliometric results and guarantee the validity of

bibliometric methods (Glänzel 1996). Standards have facilitated the analysis of journal

impact measures (Glänzel and Moed 2002) and scientific collaboration networks (Glänzel

and Schubert 2005).
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Here, we apply text classification to categorize any document within a data set into a set

of predefined disciplines. Each document is composed of unstructured text and a data set is

composed of many documents. In the discipline classification problem, a classifier, CLASS

must assign a Boolean value to each pair hdj; cii 2 D� C, where D is the data set of

documents and C ¼ fc1; . . .; cjCjg is a set of predefined disciplines. A value of true

assigned to hdj; cii indicates that document dj is part of discipline ci, while a value of false

indicates it is not. Membership within a discipline is mutually exclusive. This means that a

document, dj can only belong to one discipline, ci, at most. The set of disciplines C are

symbolic labels, no additional knowledge of their meaning is given during classification.

Similarly, only data within the documents can be used during classification.

Methodology

Given the definition of the data sets and the discipline classification problem, we propose a

solution centered around machine learning. Machine learning is a general inductive process

that trains classification models by learning, from a set of pre-classified documents, the

characteristics of a particular discipline. From these characteristics, the inductive process

gleans the characteristics that a new unseen document should have in order to be classified

into a particular discipline (Sebastiani 2002; Alpaydin 2004).

Our study consists of three phases: training the classifiers, classifying new data sets and

evaluating effectiveness. Once these are complete we employ our framework to provide

insight into M&S. In the remainder of this section we review each phase of our

methodology.

Training

Pre-classified documents are a key resource in machine learning (Sebastiani 2002;

Alpaydin 2004). Our framework leverages pre-classified documents in large, well-indexed

repositories of research publications: The Association of Computing Machinery (ACM)

and Public Library of Science (PLoS). For each abstract in the ACM and PLoS data sets we

use a negative dictionary to filter out words that obfuscate the identity of a discipline. We

employ the negative dictionary developed by Fox et al. for general texts because it has

been shown to be maximally efficient and effective in filtering semantically neutral words

in the English language (Fox 1989; Yu 2008). Next, we describe the machine learning

algorithms we apply to the filtered abstracts to train the discipline classification models.

Machine learning algorithms

We employ two different algorithms for classification: Naive Bayes (NB) and Stochastic

Gradient Descent (SGD) (Lewis 1998; Jordan 2002). While these algorithms do not span

the spectrum of machine learning algorithms they represent two different approaches to

classification—one based on bayesian statistics (NB) and the other based on logistic

regression (SGD). Here we summarize both algorithms and discuss the parameterizations

we use to train our classification models for each of the eleven disciplines in the ACM and

PLoS data sets.

The Naive Bayes approach to classification is based on applying Bayes’ theorem with

independence assumptions. Given a particular classification, it assumes that the presence or
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absence of a particular feature is unrelated to the presence or absence of any other feature.

For example, consider the description of an apple as a red, round, fruit that is 300 in

diameter. Naive Bayes approach to classification considers each of these four features (red,

round, fruit, 300 diameter) to contribute independently to the probability that a given object

is an apple, regardless of the presence or absence of the other features (Lewis 1998;

McCallum et al. 1998; Eyheramendy et al. 2003; Kim et al. 2006).

Stochastic Gradient Descent (SGD) applies a different approach to classification. It

randomly shuffles the documents in the training set and then iteratively employs a logistic

regression cost function to determine how well the current shuffle classifies the documents

into categories. The next shuffle is determined by a stochastic function and a cost function

that calculates how well (or poorly) the current shuffle separated the documents in com-

parison to the previous shuffle. This process repeats until further improvement does not

seem to be possible. Typically, SGD is most successful when applied to large, text-based
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document repositories with a moderate number of (*20) predefined categories (Zhang

2004; Bottou 2010; Baird and Moore 1999).

Accuracy

We applied the NB and SGD algorithms to both the ACM and PLoS data sets and eval-

uated the algorithms’ accuracy for each data set using a ten-fold cross validation. This

process consisted of 10 rounds where the documents in each data set were partitioned into

10 equal portions. In each round 9 of the portions of the abstracts (90 %) were used to train

the models, while the remaining portion of abstracts (10 %) were used for testing the

accuracy of the classification models (Efron and Gong 1983; Kohavi et al. 1995).

The tenfold cross validation results are shown in Figs. 1 and 2. The SGD classifier was

able to achieve an accuracy greater than 90 % in each data set and the NB classifier was

able to achieve an accuracy greater than 80 %. Given the nature of emerging disciplines

like M&S, the ambiguity of natural language and the similar domains encompassed in each

data set the performance of both classifiers, especially SGD, is significant. Furthermore,

our accuracy results show that the approach is not dependent on a single machine learning

classification technique. SGD classification may yield superior accuracy but a bayesian

algorithm still performs well. Given the superior accuracy of the SGD classifier we employ

it in the remainder of this paper. However, our approach is capable of supporting any

existing machine learning algorithm for classification.

Classification

Next, we propose an algorithm which applies our trained classification models to identify

M&S funding solicitations and accepted grant proposal abstracts from NSF and NIH. This

data is truly unstructured. It contains multiple types of documents from different time

periods. Given the lack of structure in the data sets it is not obvious how existing discipline

identification techniques would be able to be applied to identify separate corpora.

Our algorithm applies the trained classification models to each of the document (i.e.

funding solicitation and/or accepted grant proposal) in the data sets. For each document,

we use a negative dictionary to filter out words that obfuscate the identity of a discipline.

Then, each of the eleven trained models return a probability measure p, which reflects the

probability the document is part of the discipline. The maximum probability measure of the

eleven trained models is pmax. If pmax is above the probability threshold for the discipline

t then the algorithm categorizes the document as a part of the discipline. Otherwise it

moves it into the OTHER category. The OTHER reflects documents that are not part of any
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Fig. 2 Classification accuracy
for discipline classification using
tenfold cross validation
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of the eleven disciplines. The tendency of the algorithm to classify documents in the

OTHER category is dependent on the probability threshold t for each discipline. Next, we

evaluate how effective the algorithm is in classifying the NSF and NIH abstracts using

different values for t.

Evaluation

Our evaluation tests the effectiveness of our trained classifiers on 1000 randomly selected

abstracts that were manually classified into disciplines by research groups at two different

institutions. The other researchers were not restricted to classifying the abstracts into the

eleven disciplines previously discussed. For any abstract, that did not fit the eleven dis-

ciplines they could classify the document as OTHER.

In general the two research groups agreed on the classification of the abstracts. The

interrater reliability is j ¼ 0:704 with p\0:001. This reflects a level of agreement most

experts consider substantive and is a statistically significant result (Landis and Koch 1977).

For those abstracts where the two research groups expressed disagreement we examined

the abstract and chose one of the two classifications chosen by the groups.

We measure effectiveness using two metrics: (1) accuracy and (2) coverage. Accuracy

reflects the ratio of: (1) documents the algorithm correctly classified for a given discipline

compared to (2) the total number of documents the algorithm classified for a given dis-

cipline (disciplinecorrect ? disciplineincorrect). Accuracy is computed using Equation 1.

accuracy ¼ disciplinecorrect

disciplinecorrect þ disciplineincorrect

ð1Þ

Coverage reflects the ratio of documents the algorithm correctly classified for a given

discipline compared to the total number of documents cataloged in that discipline by the

other researchers (disciplinetotal). Coverage is computed using Eq. 2.
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coverage ¼ disciplinecorrect

disciplinetotal

ð2Þ

Given these measures we evaluate the effectiveness of our classification algorithm on

the NSF and NIH datasets using different values for the probability threshold parameter

t. The results of this evaluation are shown in visualized in Fig. 3. In Fig. 3 the x-axis

reflects the value of t, the y-axis reflects the accuracy and the color of each point reflects

the coverage.

Figure 3 shows a very clear tradeoff between the accuracy and coverage for different

probability thresholds. As the probability threshold decreases the accuracy decreases and

the coverage increases across all of the 11 disciplines. On the whole this trend is not

surprising. One would expect that as the algorithm classifies more abstracts into disciplines

with less certainty the algorithm’s accuracy will decrease. However, it is unexpected that

this pattern is visible and relatively uniform across all eleven disciplines. In particular, the

coverage in each discipline begins to drastically improve once t reaches 0.70. Furthermore,

the accuracy of each model does not significantly decay until t falls below 0.60.

Ultimately, the overall performance of the algorithm for the NSF and NIH could be

optimized by identifying the value for t within each discipline that provided the best

balance of accuracy and coverage. However, using a t value of 0.65 for all disciplines

provides a balance of accuracy and coverage.

Classification algorithm application

Thus far we have reviewed how our approach: (1) develops a trained classifier for M&S

using publications from large repositories and (2) effectively classifies previously unseen

funding solicitation and grant abstracts from NSF and NIH. Here, we demonstrate its utility

0

100

200

1990.0 1992.5 1995.0 1997.5 2000.0 2002.5
Year

Fu
nd

ed
G
ra
nt
s

Org
ATM
CCR
CMS
CTS
DMI
DMR
DMS
DUE

Year

2.0

0.0

1.0

1.5

0.5

3002999189913991 2002200120001997199619951994

%
 o

f 
N

S
F

 T
o

ta
l B

u
d

g
et

Fig. 4 Exploration of the percentage of NSF’s budget devoted to modeling and simulation from 1990 to
2003

Scientometrics (2016) 109:615–628 623

123



by providing examples of the types of analysis about M&S that can be performed on the

classified content to support a uniform basis for M&S research and education.

Our example explores the funding of M&S by the NSF from 1990 to 2003 (Pazzani and

Meyers 2003) and the NIH from1990 to 2012 (NIH 2003). While this analysis is

straightforward, it relies on our approach to effectively classify the modeling and simu-

lation corpus from the NSF and NIH data sets. Recall, the NIH and NSF funding solici-

tations and grant abstracts do not match the publication-citation structure required by

existing discipline classification techniques and there is not a modeling and simulation

division within either NSF or NIH. The classification step is the only automated technique

we are aware of that is capable of isolating those solicitations and grants related to

modeling and simulation. We use the set of 371 abstracts classified as M&S by our

approach with a probability threshold value of t = 0.65, which yielded and accuracy

measure of 0.741 and a coverage measure of 0.729. Unlike our previous evaluation this

classification is performed on all the funding solicitation and grants in both data sets

(*7000) as a result all of these abstracts were not manually inspected to verify classifi-

cation accuracy or coverage.

Figures 4 and 5 show the eight divisions which were the most frequent funders of

modeling and simulation within NSF and NIH from 1990 to 2003 and 1990 to 2012

respectively. Tables 1 and 2 provide a key for each acronym in the legends of Figs. 4 and

5. The most notable trend in Fig. 4 is that starting in the year 2000, funding for modeling

and simulation within NSF drastically increased. It experienced significant growth from

2000 to 2003 in seven of the eight divisions and the only division where it declined (DUE)

had been the leading funder of modeling and simulation from 1990 to 2000. In contrast, it

appears that funding for modeling and simulation grew steadily from 1990 to 2012. The

number of funded NIH grants related to modeling and simulation doubled approximately

every 5 years culminating in almost 5000 funded modeling and simulation grants in 2012.

4.0

4.5

5.0

5.5

1990 1995 2000 2005 2010
years

fu
nd

s

divs
NCI
NEI
NHLBI
NIAID
NIDCR
NIDDK
NIGMS
NLM

Division

Year
1990 1995 2000 2005 2010

1.00

0.75

0.50

0.25

0.00

%
 o

f 
N

IH
 T

o
ta

l B
u

d
g

et

Fig. 5 Exploration of the percentage of NIH’s budget devoted to modeling and simulation from 1990 to
2012

624 Scientometrics (2016) 109:615–628

123



We also employ our classification algorithms to determine the prevalence of NSF

funding for each of eleven identified disciplines. This analysis is shown in Fig. 6. One of

the visible trends in Fig. 6 is that more grants related to the established disciplines of

computer science, biology and genetics have been funded compared to the less established

disciplines of modeling and simulation, systems engineering and computational biology.

Further analysis is needed to determine if this is true for all emerging disciplines compared

to their established counterparts. However, our approach has elucidated this research

question.

Conclusion and future work

The vast majority of research on the classification of established and emerging scientific

disciplines has been restricted to research publications and citations. Given the increased

availability of unstructured text this restricted model of discipline identification is

becoming less applicable. Furthermore, difficulties associated with identifying content that

reflects M&S as a discipline versus content that uses modeling and/or simulation as a

methodological approach has limited the study of the M&S body of knowledge.

Table 1 NSF acronyms

NSF Division acronym Full name of NSF division

ATM Atmospheric Sciences

CCR Computing and Communication Foundations

CMS Civil and Mechanical Systems

CTS Chemical and Transport Systems

DMI Design and Manufacturing Innovation

DMR Division of Materials Research

DMS Division of Mathematical Sciences

DUE Division of Undergraduate Education

Legend of NSF acronyms shown in Fig. 4

Table 2 NIH acronyms

NIH Institute acronym Full name of NIH Institute

NHLBI National Heart, Lung and Blood Institute

NLM National Library of Medicine

NIAID National Institute of Allergy & Infectious Diseases

NIDDK National Institute of Diabetes, Digestive & Kidney Diseases

NEI National Eye Institutue

NIGMS National Institute of General Medical Sciences

NCI National Cancer Institute

NIDCR National Institute of Dental & Craniofacial Research

Legend of NIH acronyms shown in Fig. 5
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We address these issues with a framework to classify M&S from other emerging and

established disciplines. The framework leverages machine learning to construct classifi-

cation models. The classification models are trained on research publications to identify

M&S as well as ten other scientific disciplines. Once trained, the classification models are

deployed to identify M&S funding solicitations and grants from NSF and NIH. The per-

formance of the models is evaluated using established measures to demonstrate their

effectiveness. Finally, the proposed approach analyzes content representing M&S to

uncover new fundings trends in support of a uniform basis for research and education. In

future work, we will look to apply our approach for additional types of analyses which

build the M&S body of knowledge.
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