
Causal Program Slicing

Ross Gore and Paul F. Reynolds, Jr.
University of Virginia

{rjg7v, Reynolds}@virginia.edu

Abstract

Unexpected model behaviors need explanation, so

valid behaviors can be separated from errors.
Understanding unexpected behavior requires
accumulation of insight into the behavior and the
conditions under which it arises. Explanation
Exploration (EE) has been presented to gather insight
into unexpected behaviors. EE provides subject matter
experts (SMEs) with the capability to test hypotheses
about an unexpected behavior by semi-automatically
creating conditions of interest under which SMEs can
observe the unexpected behavior. EE also reveals the
interactions of identified variables that influence the
unexpected behavior. Causal Program Slicing,
improves EE by: automatically identifying all variables
in the model that may influence the unexpected
behavior, quantifying how the state changes in those
variables influence the unexpected behavior, and
mapping the quantified state changes in the variables
to the statements in the model’s source code that cause
change in state. These capabilities require less SME
knowledge and provide more insight than EE.

1. Introduction

Computational models are being used more and
more to predict potential outcomes of systems
involving human lives and costly resources. Generally
when computational models are used to predict
outcomes uncertainty exists about conditions affecting
the system being modeled, and about the model itself.
As a result, subject matter experts (SMEs) often
experience unexpected program behaviors and must
then explore whether the behaviors reflect an error or
an unexpected behavior of the system being modeled.

Recently, the inability of researchers to explain the
results of a developing computational model, Episims,
has led to public policy debate. Episims models the
nationwide spread of the smallpox virus under various
vaccination strategies [5]. Previous established models
of the smallpox virus show that a targeted vaccination
strategy, where individuals most likely to spread the

disease are targeted for vaccination, manages disease
spread as well as a mass vaccination for the entire
population. However, the results of Episims show that
in the event of a smallpox outbreak the disease spread
under a targeted vaccination strategy is much more
severe than the mass vaccination strategy. The
difference between these predictions has led to policy
debate over "whether or not it's necessary to synthesize
enough smallpox vaccine for the entire country" [2].

The Institute of Medicine of the National Academies
has published a collection of critical opinions of the
predictions from Episims. The chief complaint is that
the model developers cannot provide a clear
explanation for the difference between their predictions
under these vaccination strategies and previously
established estimates [1]. Methodology to facilitate the
understanding of the behavior of Episims and similar
models is needed.

Our goal is to design and develop a novel approach
to understanding model behaviors that allows SMEs to
validate or reject unexpected behaviors efficiently, and
with confidence. “Explanation Exploration” (EE) has
been introduced [7] for demonstrating that a given
unexpected behavior is valid. EE allows a SME to test
hypotheses about the unexpected behavior as a
modeled phenomenon is driven towards conditions of
interest. Due to the complexity of models where
unexpected behaviors frequently occur, the SME often
does not know how to drive the model to conditions of
interest directly. The term conditions of interest means
when a specific condition of the modeled phenomenon
is maximized, minimized or targeted to an exact point.

EE has been taken a step further by offering SMEs
additional insight into the interactions of SME
identified variables causing unexpected behavior in a
model [8]. The causal inference portion of EE can also
be applied to reveal the interactions of identified
variables in the model which create the specified
conditions of interest. This allows the SME to
understand how the model was driven to create the
specified conditions of interest.

Causal Program Slicing (CPS) is a program analysis
technique combining program slicing and causal

inference that offers more insight into the interactions
of model variables than EE with less SME supplied
information. CPS offers the following capabilities to
facilitate SME understanding of unexpected behavior:
1) the ability to automatically identify all the variables
in the model that may influence the computation of the
unexpected behavior, 2) the ability to capture state
changes throughout model execution in each of the
identified variables, 3) the ability to quantify how much
influence each state change in a variable has on the
unexpected behavior and 4) the ability to map each
state change of each variable to the statement in the
model’s source code that caused the state change.

CPS is a significant improvement over the causal
inference portion of EE. CPS does not require the SME
to identify the variables in the model that influence the
unexpected, EE does. CPS provides information about
how each state of a variable influences the unexpected
behavior. EE only provides information about how one
state of a variable influences the unexpected behavior.
Finally, CPS maps each quantified variable state
change back to the statement in the model’s source
code that caused the variable to change state. EE does
not have any notion of mapping variables to statements
in the model’s source code. These improved
capabilities are the major contribution of our work.

Next, we review work related to and employed by
CPS. Then we present CPS, describe how we applied it
to a case study model and summarize our contributions.

2. Related Work

CPS draws on the areas of program slicing,
sensitivity analysis, causal inference, design of
experiments, program debugging. We review work in
these areas and describe how the work relates to CPS.

2.1. Program Slicing

Program slicing is a decomposition technique that
extracts program statements relevant to a particular
computation within the program [18]. A program slice
provides the answer to the question, "What program
statements affect the computation of variable v at
statement s?” [15].

Both static and dynamic program slicing exist. CPS
only employs static program slicing. Figure 1(a) shows
an example program that reads an integer input n, and
computes the sum and the average of the first n positive
numbers. If the sum of the first n integers is evenly
divisible by n the program assigns 1 to x. Otherwise the

program assigns sum to x. The criterion for a static
slice is a 2-tuple consisting of {line number of
statement s, the name of variable v}, where v is the
variable of interest and s is the statement of interest.
Figure 1(b) shows a static slice of this program using
criterion {13, x}.

(a) (b)

Figure 1: (a) The example program. (b) A static slice of

the program using criterion {13 ,x}.

As shown in Figure 1(b), all computations not

relevant to the final value of variable x have been
“sliced away”. Slices are computed by identifying
consecutive sets of transitively relevant statements,
according to data flow and control flow dependences
[15]. Only statically available information is used to
compute slices; hence, this is a static slice.

CPS employs static program slicing to automatically
identify all statements in the model that may affect the
unexpected behavior. This ensures that when CPS
identifies the statements which have the strongest
influence on the unexpected behavior, each statement
that can affect the unexpected behavior will have been
considered. Also, using static program slicing relieves
the SME from having to identify variables which may
affect the unexpected program behavior.

2.2. Sensitivity Analysis

Sensitivity analysis has been proposed as a

methodology to explore the robustness of the behavior
in a model [11]. The goal behind sensitivity analysis is
to vary the initial parameters of the model by a small
amount and rerun the model. This allows the SME to
understand how sensitive the model is to parameters.

Sensitivity analysis gives the SME understanding
about how variations in input parameters affect model
outputs. Our goal is to move this analysis technique
from the input-output level of the model to the source

code level of the model where model variables change
state. This allows SMEs to understand how the
variations in the input parameters change the model
variables in the source code and how the state changes
in the model variables influence model behavior.
Performing this analysis at the source code level of the
model allows us to quantify the influence of a
variable’s change in state on an unexpected model
behavior or another variable’s state. These quantified
state changes can be mapped to the statements in the
model’s source code that cause the variables to change
state. This approach to program analysis is the major
contribution of our work.

2.3. Causal Inference

Causal inference procedures identify the causal

structure of deterministic and stochastic systems. The
procedures use the Causal Markov Condition to
produce a causal theory explaining the cause-effect
relationship of the variables of interest. The Causal
Markov Condition is that “a variable X is independent
of every other variable except X’s effects conditional
on all of X’s direct causes [14].” A causal theory
consists of a causal model and a set of parameters
which specify how each variable is influenced in the
causal model. A causal model is a directed acyclic
graph, with a 1-1 mapping between vertices in the
graph and variables of interest. A variable X is said to
have a causal influence on a variable Y if and only if a
directed path exists from vertex X to vertex Y in the
causal model. The causal model serves as the basis for
the causal theory. Each edge in the causal model is a 1-
1 mapping with an element of the set of parameters
associated with the causal theory. Each parameter
specifies the strength of the causal influence (the
absolute value of the correlation between X and Y)
induced by the corresponding link [14], [12].

CPS employs causal inference as the sensitivity
analysis mechanism to identify how strongly a given
state of a variable influences the unexpected behavior
or another variable’s state. The strength of a causal
influence is measured as the absolute value of the
correlation coefficient between the two variable states.
The absolute value of a correlation coefficient lies
between [0, 1] inclusive. Using the correlation
coefficient and conditional independence to measure
causality comes from causal inference [14], [12].

Causal inference allows CPS to build chains of
variable states which specify how the variable states
influence each other and the unexpected model

behavior. Each of these variable states can be mapped
back to the statement in the model’s source code which
caused the variable to change state. This creates a chain
of statements specifying how the statements influence
each other and the unexpected behavior.

2.4. Design of Experiments

Design of Experiments (DoE) refers to experimental
methods used to quantify indeterminate measurements
of factors and interactions through observance of
forced changes made methodically as directed by
mathematically systematic tables [11].
CPS varies model input parameters to collect samples
for each of the statements in the model’s source code
which can affect the unexpected behavior. This step of
CPS relies on DoE models to efficiently and accurately
configure the set of input parameters. The set of input
parameters is used to execute the model to collect
samples for each state of each model variable which
may influence the behavior .

2.5. Delta Debugging

Delta Debugging [19] closely matches our goal of
efficiently understanding the causes of anomalous
program behavior. Delta Debugging is an automated
approach to program debugging that isolates the causes
of failing test cases systematically. A program run that
passes a test case and one that fails the same test case
are required to apply the algorithm. The cause of
failure is isolated by assessing outcomes of altered
executions of the program to determine changes in the
program state that cause differences in test outcomes.

None of these techniques are applicable to stochastic
software or relate how variations in input parameters
cause program statements to determine the program
output. Also, these techniques do not identify
statements which have the strongest influence on a
software behavior. CPS addresses each of these issues.

3. Causal Program Slicing (CPS)

Previously, “Explanation Exploration” (EE) [7] was
introduced for exploring the possibility that a given
unexpected behavior is valid. EE allows a SME to test
hypotheses about an unexpected behavior as a modeled
phenomenon is driven semi-automatically, employing
COERCE optimization methods [17], towards
conditions of interest. EE supports SME insight into
interactions among identified variables causing

unexpected behavior [8], particurally the interactions
which create the specified conditions of interest.

Causal Program Slicing (CPS) offers more insight
into the interactions of model variables and source
code statements than EE, and requires less SME input.
CPS offers the following capabilities to facilitate SME
understanding of unexpected behavior: 1) automatic
identification of all variables in the model that may
influence the computation of the unexpected behavior,
2) capture of state changes throughout model execution
for each of the identified variables, 3) quantification of
influence each state change in a variable has on the
unexpected behavior and 4) mapping of each state
change of each variable to the statement in the model’s
source code that caused the variable to change state.
EE has been successful in assisting SMEs with
understanding and validating unexpected behaviors [7],
[8]. We believe the improved insight offered by CPS
will provide superior SME assistance and yield even
more successful results. We discuss the details of these
improvements here.

3.1. Identifying and Preprocessing Statements

CPS begins with the SME identifying the state of the

model that represents the unexpected behavior. The
program statement in the model’s source code at which
this state can be observed is identified by its line
number, L. The variable storing the value of interest
related to the unexpected behavior is identified by the
variable, V. Static program slicing is then applied using
the static slicing criterion {L, V}. The static program
slice will yield all the statements in the model’s source
code containing variables that may influence the state
of the model representing the unexpected behavior.
The static program slice ensures all statements
containing variables that can influence the unexpected
behavior are considered. Also it greatly reduces the
number of statements that need to be considered in
understanding the unexpected behavior. The list of
statements in the static program slice is passed to the
preprocessor.

CPS preprocesses model source code and inserts
statements to capture state changes of variables in the
static program slice. The inserted code collects the
value of a variable in an identified program statement
before and after the execution of the program
statement. Thus state changes in program statement
variables are mapped to model source code. The
collected variables’ values serve as samples which can
be analyzed to determine the influence a variable’s

state has on the unexpected behavior or the state of
another variable. Collection of values of variables as
the variables change state throughout the model
execution, and quantifying the influence the state
changes in the variables have on the unexpected
behavior or on each other is central to our work. Each
quantified variable state changes can be mapped back
to the statement causing the variable to change state.

Currently, three different types of program
statements can be included in a static program slice, as
depicted in Figure 2. This statement taxonomy is
adapted from [13]. Any input statements included in
the slice are treated as assignment statements to the
variable storing the input value. Output statements are
not included in the taxonomy because they cannot
affect the value of an unexpected behavior. Conditional
loop statements and conditional control-flow
statements are very closely related and can be reduced
to one another based on the definitions in Figure 2.
However, separating conditional loop statements from
conditional control-flow statements eases the
explanation of how these statements are handled by the
preprocessor. For the remainder of this section a
variable on the left-hand side of an assignment
statement is referred to as y, as in Figure 2.

Figure 2: The three different types of program

statements distinguished by the CPS preprocessor.

Assignment statements occurring outside of

conditional loop statements or conditional control flow
statements are the simplest case for the preprocessor to
handle. The preprocessor inserts code that maps the
value of y to the assignment statement, and the
preprocessor inserts code that collects the value of y
after the statement is executed.

Assignment statements that occur inside conditional
loop statements but outside conditional control-flow
statements are a more complex case for the
preprocessor to handle. For each assignment statement
with a y that is declared outside the scope of the
conditional loop the preprocessor inserts source code
that maps the value y to the assignment statement. The
value of y is also mapped to the conditional loop
statement the assignment statement is nested in. Then
for each of the mapped statements the preprocessor

inserts source code immediately outside of the
conditional loop to collect the value of each y after the
entire loop is executed. The state of an assignment
statement with a y declared inside the conditional loop
does not exist outside the loop and thus does not need
to be collected. The nesting of conditional loop
statements is currently ignored in CPS. Assignment
statements in nested conditional loops are handled as if
they were assignment statements in non-nested
conditional loops.

Assignment statements that occur inside a
conditional control-flow statement but outside a
conditional loop statement are a complex case as well.
First, the preprocessor only considers those assignment
statements with a y that is declared outside the scope of
the conditional control-flow statement. Reasoning for
this approach shadows that for the conditional loop
statement case. Next, the preprocessor groups
assignment statements with the same y located in
different paths (if/else) of the conditional control-flow
statement. The pairing ensures that the state of a
variable is sampled regardless of the path taken through
the statement during execution. A y in an assignment
statement that cannot be properly grouped cannot be
sampled. Otherwise an unequal number of samples for
some variable states could occur.

If the conditional control-flow statement has more
than two possible paths the preprocessor attempts to
find a group of assignment statements. Each
assignment statement in the group must come from a
different path and size of the group must be equal to
number of possible paths in the control-flow statement.
This ensures a program statement is sampled for every
possible execution.

For the assignment statements in conditional control-
flow statements that can be properly grouped the
preprocessor inserts code to map the variable y back to
the group of assignment statements. The value of y is
also mapped to the conditional control-flow statement
the assignment statements are nested in. Next, the
preprocessor inserts code to collect the value of y after
each assignment statement is executed. Due to the
grouping each assignment statement in the group will
lie on a different path of the conditional branch. This
approach handles nested conditional control-flow
statements without issue. At each level of nesting the
preprocessor applies the steps previously described.
Code is inserted at each level of nesting to collect
samples and perform the proper mapping for those
assignment statements that can be properly grouped.

Assignment statements inside an arbitrary nesting of

conditional loop and conditional control-flow
statements are treated by backtracking and applying the
previously described approach for each type of
statement starting at the deepest level of nesting.
However, the preprocessor only inserts code to map the
program statements to y and collect the value of y when
all levels of the nesting have been processed. This is
due to the inability of CPS to process nested
conditional loop statements. Remedies present
opportunities for future work.

3.2. Model Execution and Causal Inference

Once the preprocessing step is complete the SME

must identify a set of input parameters to explore. The
set of input parameters will be varied to determine how
changes in them change the state of the variables in the
model’s source code. We strongly encourage users of
CPS to employ Latin hypercube sampling, orthogonal
sampling, or another published sampling approach that
provides efficient and equal density coverage of the
search space for a given number of samples [10], [6].

CPS uses the set of input parameter configurations
and the code inserted by the preprocessing to execute
the model and collect the samples for each state of each
variable in the static program slice.

Next, CPS quantifies the influence of a variable state
on unexpected behavior or another variable state by
applying causal inferencing to the samples of the
variables’ states. The result is a chain of variable states
which specify how each variable state influences
others, and the unexpected model behavior. Recall, the
strength of a causal influence is measured as the
absolute value of the correlation coefficient between
two variable states. Using the correlation coefficient
and conditional independence to measure causality is
based on previous causal inference research [14], [11].

Using data stored by the preprocessor, each variable
state that is over the user-specified threshold is mapped
back to the program statement that caused the
variable’s state to change. Finally, a graph of the chain
of program statements that have a causal influence on
the unexpected behavior is displayed to the SME. The
graph is annotated with the causal influence each
program statement has on unexpected program
behavior or another program statement over threshold.
The graph focuses SME attention on understanding
those statements in the model’s source code with the
strongest causal influence on the unexpected behavior.

CPS is configurable. The SME identifies the
threshold causal influence a variable state must have on

the unexpected behavior, or on another above threshold
variable state which influences the unexpected
behavior to be included in the slice. Given a causal
influence z, z has no influence if 0.0 ≤ z < 0.1, a weak
influence if 0.1≤ z< 0.3, a moderate influence if 0.3 ≤ z
<0.5, and a strong influence if 0.5 ≤ z ≤1 [3].

The SME also configures a maximum depth of
function calls that CPS should search to identify those
variable states which have a causal influence on the
unexpected behavior.

3.3. Applying CPS to a Small Example

To help elucidate CPS, process we apply it to the
program in Figure 1(a). The work of the preprocessor
is shown in Figure 3. The names array maps
statements to state changes in variables. The samples
array records the value of the state change.

Figure 3: The result of preprocessing Figure 1(a) with

respect to the state of the variable x in line number 13.

CPS proceeds as follows:
1. The user identifies the value of x in line 13 as the

program state capturing the unexpected behavior.
2. The user configures CPS to only collect those

variable states within the same function that affect
the value of x in line 13. The user also specifies a
causal influence threshold of .6, this is the minimum
influence a variable state must have on the value of
x in line 13 or on another variable state which has
an influence ≥ .6 on the value of x in line 13.

3. The causal program slicer initiates static program
slicing with the slicing criterion {13, x} to
determine the program statements, shown in Figure
1(b) that influence the value of x in statement 13.

4. For program statements 1-4 the preprocessor inserts
code to map the state of the variables n, i, x
and sum back to their respective program
statements. Code is inserted by the preprocessor to
collect the state of each variable after each statement
is executed.

5. The preprocessor identifies statement 6 as a
conditional loop. The preprocessor inserts code to
map this state of sum to statements 6, 7 and 9.
Similarly, the preprocessor inserts code to map this
state of i to statements 6, 8, and 9. Code to collect
the state of sum and i is inserted after the end of
the conditional loop in statement 9.

6. The preprocessor identifies statement 10 as a
conditional control flow statement. It pairs the x in
statement 11 with the x in statement 12 and inserts
code to map this state of the variable x with
statements 10, 11 and 12. Code to collect the state
of variable x after the end of the conditional
control-flow in statement 12 is added.

7. The user performs orthogonal sampling to generate
1,000 different values for input parameter n, and
runs the program for each of the generated values.
The values for n range between 1 and 10,000.

8. CPS performs causal inference on the generated
samples. CPS outputs a causal graph including each
variable state with an influence ≥ .6 on the value of
x in line 13 or on another variable state which has a
causal influence ≥ .6 on the value of x in line 13.

9. Each variable state is mapped back to the program
statement that causing the variable to change state.
The causal graph containing only the program
statements with the strongest causal influence on the
value of x in line 13 is shown in Figure 4.
The user gains insight from Figure 4. The initial

value of n, and the state of sum, where the integers ≤ n
are added together have the strongest influence on the
value of x in line 13.

Figure 4: The causal program slice for Figure 1(a) with

slicing criterion {13, x} and a threshold of causal

influence of .6.

This example is not meant to be representative of an
actual program with unexpected behavior, but to

illustrate how CPS works. Next, we present a case
study where CPS is rigorously applied.

4. CPS and the Self-Driven Particle Model

To evaluate CPS we conducted a case study using a
self-driven particle model [16], exhibiting unexpected
behavior. In the self-driven particle model particles
interact on a 2-dimensional torus according to a simple
rule. Particles move at a constant speed, and their
orientation is set to be the average orientation of all
particles within an interaction radius plus a random
term. Under most parameterizations particles form
clusters when each follows the given set of rules.
Figure 5(a) shows a typical model execution where
three clusters have formed. Color is only used to
distinguish particles from one another. However, under
some parameterizations the particles exhibit a different
behavior. Rather than joining a distinct cluster, each
particle roams in a random walk. This behavior is
called Spontaneous Symmetry Breaking [16], [9]. This
is shown in Figure 5(b).

(a) (b)

Figure 5: (a) Clustering in the model. (b) Spontaneous

Symmetry Breaking in the model.

It is claimed that the only model parameter with a

strong influence on Spontaneous Symmetry Breaking is
the amount of randomness applied to a particle’s
orientation [16], [9].

We apply CPS to the Self-Driven Particle Model to
determine which input parameters influence
Spontaneous Symmetry Breaking, how those input
parameters cause state changes in variables in the
model’s source code, and how the state changes in
those variables create Spontaneous Symmetry
Breaking. CPS quantifies the influence of each variable
state change on other variable state changes. Also, each
variable state change can be mapped back to the
statement in the model source code that caused the
variable to change state. Thus, CPS reveals which
statements in the model source code, beginning with

input parameters, have the strongest influence on
Spontaneous Symmetry Breaking.

The program state representing Spontaneous
Symmetry Breaking is where the number of clusters in
the model is computed. If particles are tightly clustered
there will be very few clusters in the model. If particles
are roaming the torus in a random walk there will be
almost as many clusters are there are particles. Because
many time steps of the model form a sample, we use
the median number of clusters in the model across all
the time steps. Line 354 captures the program state of
interest. Figure 6 is the result of applying CPS with a
causal influence threshold of 0.6.

Figure 6: The causal program slice with threshold .6 with

respect to line 354, the computation of the median

number of clusters.

The function containing line number 354 comprises
57 lines of source code. Applying static program
slicing to the program state representing the
unexpected behavior, the computation of
medianNumberOfClusters in line 354, reduces
the number of statements in the source code that
influence the unexpected behavior to 36. Applying CPS
with a causal influence threshold of 0.6 to the
computation of medianNumberOfClusters in
line 354 reduces the number of statements to seven!
Furthermore, the SME is guaranteed that these seven
statements have the strongest influence on the

computation of the unexpected behavior.
Figure 6 shows that the two input parameters
randomness and radius which are used to create
the variable myModel have a strong causal influence
on the number of clusters in the model. randomness
is the amount of randomness in particle orientation and
radius is the interaction radius around a particle.
Recall, a particle identifies other particles within the
interaction radius and chooses its own orientation
based on the average of those particles.

Figure 6 also shows that the call to step (line 346)
in the conditional loop statement changes the state of
myModel. This call has a strong causal influence on
the number of clusters in the model. The call to
getNumberOfClusters uses the state change of
myModel caused by step to change the state of
numberOfClusters[i].

Figure 6 reveals line 347 also has a strong causal
influence on the number of clusters in the model. To
better understand the influence of the variable states
and program statements in the functions step, and
getNumberOfClusters, on the number of
clusters, we apply CPS again to each function. The
result of applying CPS to the step function, with
respect to the computation of
medianNumberOfClusters in line 354, for a
causal influence threshold of 0.6, is shown in Figure 7.
Results of applying CPS to
getNumberOfClusters are discussed later.

Figure 7 shows the state changes that occur in the
step function that influence the number of clusters.
Note particles are divided into clusters by the function
assignClusters in ClusterAssignment. We
apply CPS to the call to assignClusters which
reveals that a state change to a variable in function
getNeighborsWithinRadius has a strong
influence on the number of clusters. This influence is a
reflection of the causal influence of the radius
parameter. Particles with a large interaction radius are
able to identify more neighbors to include in a cluster,
which limits the total number of clusters in the model
and does not result in Spontaneous Symmetry
Breaking. Conversely, a small interaction radius results
in many clusters of a small number of particles and
helps cause Spontaneous Symmetry Breaking. Figure 7
also shows that assignClusters returns an array
which holds the number of particles in each cluster in
the model. The array is sorted and
myModel.maxClusterID is then set to the index
of the last array component. This statement changes the

state of myModel.maxClusterID to one less than
the number of clusters in the model.

Figure 7: The causal program slice with a threshold of .6

for the function step with respect to line 354.

The state of randomTerm, a variable affected by

myModel.randomness has a strong causal
influence on the number of clusters. This is consistent
with previous literature on self-driven particle models
[18], [10]. A large random term does not allow the
particles to organize into clusters, resulting in a large
number of clusters. This reflects the causal influence of
the model input parameter randonmenss on
Spontaneous Symmetry Breaking.

There is only one state change that occurs in the
getNumClusters function; numberOfClusters
is assigned maxClusterID + 1. The effect of this
state change on the number of clusters is already
quantified, and explains the high causal influence
myModel.step has on numOfClusters[i] in
Figure 6. The function call myModel.step changes
the state of myModel.maxClusterID and then
immediately following that assignment the value of
myModel.maxClusterID + 1 is assigned to
numOfClusters[i]. These two function calls
count the number of clusters at each time step and store
the result in numOfClusters.

The remainder of Figure 6 is fairly simple. The array

numOfClusters is sorted and then the median value
is taken. Currently, CPS records the state of an array by
taking its arithmetic mean. This is not generally ideal;
improving this assumption is future work.

The claim of previous authors that randomness is the
primary causal factor in determining number of
clusters, while correct, has been demonstrated to be
incomplete by our application of CPS. Other factors,
in particular interaction radius, have significant
influences themselves. A user equipped with the
broader understanding of influences on clustering
provided by CPS, possesses greater insight into the
behavior of the model.

5. Conclusion

Our goal is to design and develop an efficient and
effective approach to support SME understanding of
unexpected model behaviors. We have improved the
capabilities of the previously published approach, EE,
by offering SMEs more insight into unexpected model
behavior with less required SME information. CPS
offers SMEs the following capabilities: 1) automatic
identification of all variables in the model that may
influence the computation of the unexpected behavior,
2) capture of state changes throughout model execution
for each of the identified variables, 3) quantification of
influence each state change in a variable has on the
unexpected behavior and 4) mapping of each state
change of each variable to the statement in the model’s
source code that caused the variable to change state.

6. References

[1] A. Baciu, A. Anason, K. Stratton, and B. Strom, The
Smallpox Vaccination Program: Public Health in an Age of
Terrorism, Inst. of Med. of Natl. Acad., Wash., D.C., 2005.

[2] A. E. Cha, “Computers Simulate Terrorism’s Extremes”,
Washington Post, Washington, D.C., July 4, 2005, pp. A1.

[3] Cohen, J. Statistical power analysis for the behavioral
sciences, L. E. Associates, Philadpelphia, PA, 1988.

[4] T. Eisenbarth, R. Koschke, and D. Simon, “Locating
Features in Source Code”, IEEE Transactions on Software
Engineering 29:(3), March 2003, pp. 210-222.

[5] S. Eubank, H. Guclu, A. Kumar, M. V. Marathe, A.
Srinivasan, Z. Toroczkai, and N. Wang, “Modeling disease
outbreaks in realistic urban social networks”, Nature
2541:(429), November 2004, pp. 180-184.

[6] A.G. Garcia, “Orthogonal sampling formulas: a unified
approach”, SIAM Review 42, September 2000, pp. 499–512.

[7] R. Gore, P. F. Reynolds, L. Tang, and D.C. Brogan,
“Explanation Exploration: Exploring Emergent Behavior”,
Proceedings of the 2007 Conference on Principles of
Advanced and Distributed Simulation, June 2007.

[8] R. Gore and P. F. Reynolds, “Applying Causal Inference
to Understand Emergent Behavior”, Proceedings of the 2008
Winter Simulation Conference, December 2008.

[9] C. Huepe, M. Aldana, “Intermittency and Clustering in a
System of Self-Driven Particles”, Physical Review Letters
92:(16), 2004.

 [10] W. L. Loh. “On Latin Hypercube Sampling”, Annals of
Statistics 24:(5), 1996, pp. 2058–2080.

[11] Montgomery, D.C., Design and Analysis of Experiments
6th Edition, Wiley & Sons, Indianapolis, IN, 2004.

[12] Pearl, J., Causality: Models, Reasoning, and Inference,
Cambridge Univ. Press, Camebridge, MA, 2000.

[13] S. Rapps, and E. J. Weyuker, “Selecting software test
data using data flow information”, IEEE Transactions of
Software Engineering 11:(4), April 1985, pp. 376-375.

[14] Spirtes, P., Glymour, C., and Scheines, R. Causation,
Prediction, and Search, Springer Verlag, NY, 2001.

[15] F. Tip, “A Survey of Program Slicing Techniques”,
Journal of Programming Languages 3:(3), pp. 121-189.

[16] T. Vicsek, A. Czirock, E. Ben-Jacob, I. Cohen, and O.
Shochet, “Novel type of Phase Transition in a System of
Self-Driven Particle”, Physicsal Review Letters 75, 1995.

[17] S. Wazziruddin, P.F. Reynolds and D.C. Brogan. “The
Process of Coercing Simulations”, Proceedings of 2003 Fall
Simulation Interoperability Workshop, Orlando, FL, 2003.

[18] M. Weiser, “Program Slicing”, Proceedings of the 5th
Conference on Software engineering, 1981, pp. 439-449.

[19] A. Zeller, “Isolating Cause-Effect Chains from
Computer Programs”, Proceedings of Symposium on the 10th
Symposium on Foundations of Software Engineering, 2002.

