Causal Program Slicing

Ross Gore and Paul F. Reynolds, Jr.
University of Virginia
{rjg7v, Reynolds}@virginia.edu

Abstract disease are targeted for vaccination, managesseisea
spread as well as a mass vaccination for the entire

Unexpected model behaviors need explanation, sopopulation. However, the results of Episims shbat t
valid behaviors can be separated from errors. in the event of a smallpox outbreak the diseaseaspr
Understanding unexpected behavior requires under a targeted vaccination strategy is much more
accumulation of insight into the behavior and the severe than the mass vaccination strategy. The
conditions under which it arises. Explanation difference between these predictions has led t@yol
Exploration (EE) has been presented to gather msig debate over "whether or not it's necessary to sgieh
into unexpected behaviors. EE provides subjectemat enough smallpox vaccine for the entire country" [2]
experts (SMEs) with the capability to test hypatBes The Institute of Medicine of the National Academies
about an unexpected behavior by semi-automatically has published a collection of critical opinions tbé

c[)eating cr:)nditions of ir&tebreﬁt under WhiICh SMEBlcah predictions from Episims. The chief complaint istth
observe the unexpected behavior. EE also reveals t the model developers cannot provide a clear

interactions of |dent!f|ed variables that mfluentie_ae_ explanation for the difference between their preoi

unexpected behavior. Causal Program Slicing, S : :

improves EE by: automatically identifying all vablas under these vaccination strategies and previously
established estimates [1]. Methodology to fac#ittite

in the model that may influence the unexpected ,) 27 o
behavior, quantifying how the state changes in ¢hos understanding of the behavior of Episims and simila

variables influence the unexpected behavior, and MOdels is needed.

mapping the quantified state changes in the vagsbl Our goal is to design and develop a novel approach
to the statements in the model’s source code tiate 0 understanding model behaviors that allows SMEs t

change in state. These capabilities require les€SM validate or reject unexpected behaviors efficigralyd
knowledge and provide more insight than EE. with confidence. “Explanation Exploration” (EE) has
been introduced [7] for demonstrating that a given

unexpected behavior is valid. EE allows a SME &1 te
1. Introduction hypotheses about the unexpected behavior as a
modeled phenomenon is driven towards conditions of

Computational models are being used more andinterest. Due to the complexity of models where
more to predict potential outcomes of systems unexpected behaviors frequently occur, the SMEnofte
involving human lives and costly resources. Geteral does not know how to drive the model to conditiohs
when computational models are used to predictinterest directly. The termonditions of interestneans
outcomes uncertainty exists about conditions dffgct when a specific condition of the modeled phenomenon
the system being modeled, and about the modef.itsel is maximized, minimized or targeted to an exachpoi
As a result, subject matter experts (SMEs) often EE has been taken a step further by offering SMEs
experience unexpected program behaviors and musedditional insight into the interactions of SME
then explore whether the behaviors reflect an esror identified variables causing unexpected behavioa in
an unexpected behavior of the system being modeled. model [8]. The causal inference portion of EE clso a

Recently, the inability of researchers to expldia t be applied to reveal the interactions of identified
results of a developing computational model, Episim variables in the model which create the specified
has led to public policy debate. Episims models the conditions of interest. This allows the SME to
nationwide spread of the smallpox virus under waio understand how the model was driven to create the
vaccination strategies [5]. Previous establishedet®o ~ specified conditions of interest.
of the smallpox virus show that a targeted vac@nat Causal Program Slicing (CPS) is a program analysis
strategy, where individuals most likely to sprehé t technique combining program slicing and causal

inference that offers more insight into the intéiats program assigns sum to x. The criterion for a ctati
of model variables than EE with less SME supplied slice is a 2-tuple consisting of {line number of
information. CPS offers the following capabilitiés statement s, the name of variable v}, where v & th
facilitate SME understanding of unexpected behavior variable of interest and s is the statement ofréste
1) the ability to automatically identify all the nables Figure 1(b) shows a static slice of this progranmgis
in the model that may influence the computatiothef criterion {13, x}.

unexpected behavior, 2) the ability to captureestat

changes throughout model execution in each of the 1 read(nm); 1 read(n);
identified variables, 3) the ability to quantifyvaenuch Zorml Zorm Y
influence each state change in a variable has en th 4 sum i=0; 4 sum i=0;
. . 5 average := 0;
unexpected behavior and 4) the ability to map each 6 while i<= n 6 while i<= n
state change of each variable to the statemertien t g cmiTsmruo D gmaTemt
1 9 d 9 d

model's source cqt_je thaF caused the state change. 70 or um mod 1 = 0) | 10 o2 oum mod m — o)

CPS is a significant improvement over the causal 1 ox =1 1 x =1
. . . else else
inference portion of EE. CPS does not require &S 12 x := sum; 12 x i= sum;
to identify the variables in the model that infleerthe Ta e 0 umy | R
unexpected, EE does. CPS provides information about 15 print (average);
how each state of a variable influences the undggdec (a) (b)

behavior. EE pnly provides information about hpveon Figure 1: (a) The example program. (b) A static slice of
state of a variable influences the unexpected behav o program using criterion {13 ,x}.

Finally, CPS maps each quantified variable state
change back to the statement in the model's source aq shown in Figure 1(b), all computations not
code that caused the variable to change state.0eg d
not have any notion of mapping variables to stateme

relevant to the final value of variabbe have been
) , ! “sliced away”. Slices are computed by identifying
in the model's source code. ~ These improved . ,secytive sets of transitively relevant statement

capabilities are _the major contribution of our work according to data flow and control flow dependences
Next, we review work related to and employed by 151 oniy statically available information is uséd
CPS. Then we present CPS, describe how we applied 'compute slices: hence, this is a static slice.

to a case study model and summarize our contrifsitio CPS employs static program slicing to automatically
identify all statements in the model that may dftbe

2. Related Work unexpected behavior. This ensures that when CPS

. identifies the statements which have the strongest

CPS draws on the areas of program slicing, jnfiuence on the unexpected behavior, each statemen

sensitivity analysis, causal inference, design Of ya¢ can affect the unexpected behavior will haserb

experiments, program debugging. We review work in .,nsidered. Also, using static program slicingenedis
these areas and describe how the work relates $ CP the SME from having to identify variables which may

o affect the unexpected program behavior.
2.1. Program Slicing

Program slicing is a decomposition technique that 2.2. Sensitivity Analysis
extracts program statements relevant to a particula
computation within the program [18]. A program slic
provides the answer to the question, "What program
statements affect the computation of variable v at
statement s?” [15].

Both static and dynamic program slicing exist. CPS
only employs static program slicing. Figure 1(ajwh
an example program that reads an integer inpuhah, a
computes the sum and the average of the first itiy@s
numbers. If the sum of the first n integers is éven
divisible by n the program assigns 1 to x. Otheevtige

Sensitivity analysis has been proposed as a
methodology to explore the robustness of the behavi
in a model [11]. The goal behind sensitivity anlyis
to vary the initial parameters of the model by aakm
amount and rerun the model. This allows the SME to
understand how sensitive the model is to parameters

Sensitivity analysis gives the SME understanding
about how variations in input parameters affect ehod
outputs. Our goal is to move this analysis techamiqu
from the input-output level of the model to the 1m@Bu

code level of the model where model variables ceang behavior. Each of these variable states can be edapp
state. This allows SMEs to understand how the back to the statement in the model's source codehwh
variations in the input parameters change the modelcaused the variable to change state. This createaia
variables in the source code and how the stategelsan of statements specifying how the statements inflaen
in the model variables influence model behavior. each other and the unexpected behavior.

Performing this analysis at the source code lef/éh®

model allows us to quantify the influence of a 24. Design of Experiments

variable’'s change in state on an unexpected model

behavior or another variable’s state. These quedtif Design of Experiments (DoE) refers to experimental
state changes can be mapped to the statementse in thmethods used to quantify indeterminate measurements
model’s source code that cause the variables toggha of factors and interactions through observance of
state. This approach to program analysis is the@maj forced changes made methodically as directed by

contribution of our work. mathematically systematic tables [11].
CPS varies model input parameters to collect sample
2.3. Causal Inference for each of the statements in the model’s soura co

which can affect the unexpected behavior. This sfep
Causal inference procedures identify the causal CPS relies on DoE models to efficiently and acailyat
structure of deterministic and stochastic systehme configure the set of input parameters. The sehpft
procedures use the Causal Markov Condition to parameters is used to execute the model to collect
produce a causal theory explaining the cause-effectsamples for each state of each model variable which
relationship of the variables of interest. The Ghus may influence the behavior .
Markov Condition is that “a variable X is indepentle
of every other variable except X's effects condiib 2.5. Delta Debugging
on all of X’'s direct causes [14].” A causal theory
consists of a causal model and a set of parameters Delta Debugging [19] closely matches our goal of
which specify how each variable is influenced ie th efficiently understanding the causes of anomalous
causal model. A causal model is a directed acyclic program behavior. Delta Debugging is an automated
graph, with a 1-1 mapping between vertices in the approach to program debugging that isolates theesau
graph and variables of interest. A variable X igl ¢a of failing test cases systematically. A program tit
have a causal influence on a variable Y if and @ndy passes a test case and one that fails the sameagest
directed path exists from vertex X to vertex Y et are required to apply the algorithm. The cause of
causal model. The causal model serves as the foasis failure is isolated by assessing outcomes of altere
the causal theory. Each edge in the causal modelis executions of the program to determine changeben t
1 mapping with an element of the set of parametersprogram state that cause differences in test owtsom
associated with the causal theory. Each parameter None of these techniques are applicable to stachast
specifies the strength of the causal influence (thesoftware or relate how variations in input paramrste
absolute value of the correlation between X and Y) cause program statements to determine the program
induced by the corresponding link [14], [12]. output. Also, these techniques do not identify
CPS employs causal inference as the sensitivitystatements which have the strongest influence on a
analysis mechanism to identify how strongly a given software behavior. CPS addresses each of thessissu
state of a variable influences the unexpected behav
or another variable’s state. The strength of a aaus 3. Causal Program Slicing (CPS)
influence is measured as the absolute value of the
correlation coefficient between the two variablates. Previously, “Explanation Exploration” (EE) [7] was
The absolute value of a correlation coefficientslie introduced for exploring the possibility that a @iv
between [0, 1] inclusive. Using the correlation unexpected behavior is valid. EE allows a SME &1 te
coefficient and conditional independence to measurehypotheses about an unexpected behavior as a ndodele
causality comes from causal inference [14], [12]. phenomenon is driven semi-automatically, employing
Causal inference allows CPS to build chains of COERCE optimization methods [17], towards
variable states which specify how the variableestat conditions of interest. EE supports SME insighbint
influence each other and the unexpected modelinteractions among identified variables causing

unexpected behavior [8], particurally the interact state has on the unexpected behavior or the sfate o
which create the specified conditions of interest. another variable. Collection of values of variabées
Causal Program Slicing (CPS) offers more insight the variables change state throughout the model
into the interactions of model variables and source execution, and quantifying the influence the state
code statements than EE, and requires less SME inpu changes in the variables have on the unexpected
CPS offers the following capabilities to facilite&&1E behavior or on each other is central to our workche
understanding of unexpected behavior: 1) automaticquantified variable state changes can be mappekl bac
identification of all variables in the model thatayn to the statement causing the variable to change. sta
influence the computation of the unexpected belmavio Currently, three different types of program
2) capture of state changes throughout model eixecut statements can be included in a static prograre,siis
for each of the identified variables, 3) quantifica of depicted in Figure 2. This statement taxonomy is
influence each state change in a variable has en th adapted from [13]. Any input statements included in
unexpected behavior and 4) mapping of each statethe slice are treated as assignment statementiseto t
change of each variable to the statement in theetisod variable storing the input value. Output statemenés
source code that caused the variable to change. stat not included in the taxonomy because they cannot
EE has been successful in assisting SMEs withaffect the value of an unexpected behavior. Coufiti
understanding and validating unexpected behaviirs [loop statements and conditional control-flow
[8]. We believe the improved insight offered by CPS statements are very closely related and can beceedu
will provide superior SME assistance and yield even to one another based on the definitions in Figure 2
more successful results. We discuss the detailseske However, separating conditional loop statementmfro

improvements here. conditional control-flow statements eases the
explanation of how these statements are handlédeby
3.1. Identifying and Preprocessing Statements preprocessor. For the remainder of this section a

variable on the left-hand side of an assignment
CPS begins with the SME identifying the state ef th statement is referred to gsas in Figure 2.
model that represents the unexpected behavior. The

program statement in the model’s source code attwhi i grment kot gor—J (yy o)

this state can be observed is identified by ite lin /T oy e, are varables

number, L. The variable storing the value of insére i;:ﬁi!;ff:jf&i‘:ﬁﬁ.ﬁﬁ?i'ﬁ.:{T:i i&?&é’l’éﬁ”{}a s a label
related to the UneXpeCted behavior is |dent|f|edﬁhﬁ/ Conditiona! Control-flow Statement: if p(x;....x,) gotom
Variablev V. Static program SIiCing is then apleEIlhg where pis a predicate, x,....x, are \filrs;:\b‘\éf:?i;!ii mand » are labels

the static slicing criterion {L, V}. The static pgoam Figure 2: The three different types of program

slice will yield all the statements in the modedsurce statements distinguished by the CPS preprocessor.
code containing variables that may influence tlatest

of the model representing the unexpected behavior. agsignment statements occurring outside of
The static program slice ensures all statementscopgitional loop statements or conditional conftaiv
containing variables that can influence the unetgiec statements are the simplest case for the preprarcess
behavior are considered. Also it greatly reduces th pandie. The preprocessor inserts code that maps the
number of statements that need to be considered inue of y to the assignment statement, and the

understanding the unexpected behavior. The list of yreprocessor inserts code that collects the vafug o
statements in the static program slice is passetelo fier the statement is executed.

preprocessor. Assignment statements that occur inside conditional

CPS preprocesses model source code and insertgyop statements but outside conditional controlvflo
statements to capture state changes of variablé®in gtatements are a more complex case for the
static program slice. The inserted code collects th preprocessor to handle. For each assignment statem
value of a variable in an identified program st&em \ith a y that is declared outside the scope of the
before and after the execution of the program congitional loop the preprocessor inserts souradeco
statement. Thus state changes in program statemenjyat maps the valugto the assignment statement. The
variables are mapped to model source code. Theygue of y is also mapped to the conditional loop
collected variables’ values serve as samples WeBCh statement the assignment statement is nested @n Th
be analyzed to determine the influence a variable’sy; each of the mapped statements the preprocessor

inserts source code immediately outside of the conditional loop and conditional control-flow
conditional loop to collect the value of eachfter the statements are treated by backtracking and appliiig
entire loop is executed. The state of an assignmentpreviously described approach for each type of
statement with & declared inside the conditional loop statement starting at the deepest level of nesting.
does not exist outside the loop and thus doesemd n However, the preprocessor only inserts code to timap

to be collected. The nesting of conditional loop program statements foand collect the value gfwhen
statements is currently ignored in CPS. Assignmentall levels of the nesting have been processed. iBhis
statements in nested conditional loops are haraidtl due to the inability of CPS to process nested
they were assignment statements in non-nestedconditional loop statements. Remedies present
conditional loops. opportunities for future work.

Assignment statements that occur inside a
conditional control-flow statement but outside a 3.2. Model Execution and Causal I nference
conditional loop statement are a complex case ds we
First, the preprocessor only considers those assigh Once the preprocessing step is complete the SME
statements with g that is declared outside the scope of must identify a set of input parameters to expldiee
the conditional control-flow statement. Reasoning f set of input parameters will be varied to deternfines
this approach shadows that for the conditional loop changes in them change the state of the variabldwi
statement case. Next, the preprocessor groupsmodel’s source code. We strongly encourage users of
assignment statements with the sagndocated in CPS to employ Latin hypercube sampling, orthogonal
different paths (if/else) of the conditional comtfiow sampling, or another published sampling approaah th
statement. The pairing ensures that the state of &provides efficient and equal density coverage @& th
variable is sampled regardless of the path takerugn search space for a given number of samples [1]], [6
the statement during execution.yAin an assignment CPS uses the set of input parameter configurations
statement that cannot be properly grouped cannot beand the code inserted by the preprocessing to &xecu
sampled. Otherwise an unequal number of sampites fothe model and collect the samples for each statac
some variable states could occur. variable in the static program slice.

If the conditional control-flow statement has more Next, CPS quantifies the influence of a variabétest
than two possible paths the preprocessor atteropts t on unexpected behavior or another variable state by
find a group of assignment statements. Eachapplying causal inferencing to the samples of the
assignment statement in the group must come from avariables’ states. The result is a chain of vaeaithtes
different path and size of the group must be equal which specify how each variable state influences
number of possible paths in the control-flow statam others, and the unexpected model behavior. Rebhall,
This ensures a program statement is sampled foy eve strength of a causal influence is measured as the
possible execution. absolute value of the correlation coefficient betwe

For the assignment statements in conditional cbntro two variable states. Using the correlation coedfiti
flow statements that can be properly grouped theand conditional independence to measure causality i
preprocessor inserts code to map the varigltblack to based on previous causal inference research [IL4], [
the group of assignment statements. The valug isf Using data stored by the preprocessor, each variabl
also mapped to the conditional control-flow statetme state that is over the user-specified threshoidapped
the assignment statements are nested in. Next, thdback to the program statement that caused the
preprocessor inserts code to collect the valug affer variable’s state to change. Finally, a graph ofdhain
each assignment statement is executed. Due to thef program statements that have a causal influence
grouping each assignment statement in the group wil the unexpected behavior is displayed to the SME Th
lie on a different path of the conditional brangthis graph is annotated with the causal influence each
approach handles nested conditional control-flow program statement has on unexpected program
statements without issue. At each level of nestirgy behavior or another program statement over thrdshol
preprocessor applies the steps previously describedThe graph focuses SME attention on understanding
Code is inserted at each level of nesting to cbllec those statements in the model’'s source code wih th
samples and perform the proper mapping for thosestrongest causal influence on the unexpected behavi
assignment statements that can be properly grouped. CPS is configurable. The SME identifies the

Assignment statements inside an arbitrary nesting o threshold causal influence a variable state mus ba

the unexpected behavior, or on another above thicesh 4.

variable state which influences the unexpected
behavior to be included in the slice. Given a chusa
influencez, z has no influence if 0.8 z< 0.1, a weak
influence if 0.k z< 0.3, a moderate influence if 0<32
<0.5, and a strong influence if 06z<1 [3].

The SME also configures a maximum depth of S.

function calls that CPS should search to identifyse
variable states which have a causal influence en th
unexpected behavior.

3.3. Applying CPSto a Small Example

To help elucidate CPS, process we apply it to the
program in Figure 1(a). The work of the preprooess
is shown in Figure 3. Thenanes array maps
statements to state changes in variables.sBEmpl es
array records the value of the state change.

1 read(nm):
names [0] = “read(n):";
samples[0] = n;
2 i =1
names[l] = "1 = 1;°;
samples[l] = i;
3 =x = 0;
names[2] = "=z = 0:7;
samples[2] = x;
4 sum := 0
names[3] = “sum := 0:7;
samples[3] = sum;
while i<= n
sum = sum + i;
i =i #1;

[

end
names[4] = “while i<=n sum := sum + i; end”;
samples[4] = sum;
names [5] = “while i<=n i =i + 1; end”;
samples[5] = i;
10 if (sum mod n == 0}
11 x = 1;
elsa
12 X = sum;
names[6] = “if (sum mod n ==0) x:= 1 elsa x = sum”;
samples[6] = x;
13 print (x):

For program statements 1-4 the preprocessor inserts
code to map the state of the variabies i, x

and sum back to their respective program
statements. Code is inserted by the preprocessor to
collect the state of each variable after each rsizte

is executed.

The preprocessor identifies statement 6 as a
conditional loop. The preprocessor inserts code to
map this state obum to statements 6, 7 and 9.
Similarly, the preprocessor inserts code to mag thi
state of i to statements 6, 8, and 9. Code to collect
the state osumandi is inserted after the end of
the conditional loop in statement 9.

6. The preprocessor identifies statement 10 as a

conditional control flow statement. It pairs the in
statement 11 with thex in statement 12 and inserts
code to map this state of the variable x with
statements 10, 11 and 12. Code to collect the state
of variable x after the end of the conditional
control-flow in statement 12 is added.

7. The user performs orthogonal sampling to generate

1,000 different values for input parameter and
runs the program for each of the generated values
The values fon range between 1 and 10,000.

8. CPS performs causal inference on the generated

samples. CPS outputs a causal graph including each
variable state with an influence.6 on the value of

x in line 13 or on another variable state which &as
causal influence .6 on the value of in line 13.

9. Each variable state is mapped back to the program

statement that causing the variable to change. state
The causal graph containing only the program
statements with the strongest causal influencénen t
value ofx in line 13 is shown in Figure 4.

The user gains insight from Figure 4. The initial

value ofn, and the state agfum where the integersn
are added together have the strongest influendhen
value ofx inline 13.

Figure 3: The result of preprocessing Figure 1(a) with
respect to the state of the variable x in line number 13.

CPS proceeds as follows:
1. The user identifies the value ®fin line 13 as the

1 read(n):

program state capturing the unexpected behavior. 6 ‘.hille'q:: §

2. The user configures CPS to only collect those A
variable states within the same function that affec ? e"‘l —
the value ofx in line 13. The user also specifies a A mamano s

11 x = 1;

causal influence threshold of .6, this is the mumm ik
influence a variable state must have on the vafue o & ’1 o
X in line 13 or on another variable state which has

an influence> .6 on the value of in line 13.

3. The causal program slicer initiates static program
slicing with the slicing criterion {13, x} to
determine the program statements, shown in Figure
1(b) that influence the value »f in statement 13.

13 print (x);
Figure 4: The causal program slice for Figure 1(a) with
slicing criterion {13, x} and a threshold of causal
influence of .6.

This example is not meant to be representativenof a
actual program with unexpected behavior, but to

illustrate how CPS works. Next, we present a caseinput parameters, have the strongest influence on

study where CPS is rigorously applied. Spontaneous Symmetry Breaking.
The program state representing Spontaneous
4. CPS and the Sdf-Driven Particle M odéel Symmetry Breaking is where the number of clusters i

the model is computed. If particles are tightlystéred

To evaluate CPS we conducted a case study using #here will be very few clusters in the model. Ifjees
self-driven particle model [16], exhibiting unexpeat are roaming the torus in a random walk there wéll b
behavior. In the self-driven particle model pagg&l almost as many clusters are there are particlesaBe
interact on a 2-dimensional torus according tomgpks many time steps of the model form a sample, we use
rule. Particles move at a constant speed, and theithe median number of clusters in the model acrtiss a
orientation is set to be the average orientatioralbf the time steps. Line 354 captures the program state
particles within an interaction radius plus a ramdo interest. Figure 6 is the result of applying CP$hve
term. Under most parameterizations particles form causal influence threshold of 0.6.
clusters when each follows the given set of rules.
Figure 5(a) shows a typical model execution where e g e o B e e oo
three clusters have formed. Color is only used to
distinguish particles from one another. Howevedain
some parameterizations the particles exhibit aecfit
behavior. Rather than joining a distinct clusteacte 10 7
particle roams in a random walk. This behavior is

Line Number 304

double randomness =
Double.parseDouble (args [5]) ;

double radius =

Line Number 306
Double.parseDouble (args[3]) ;

. . Line Number 314
called Spontaneous Symmetry Breaking [16], [9].sThi _ _ _ _
X A A ParticleModel myModel = new ParticleModel (boxWidth, boxHeight,
is shown in Figure 5(b). Eedive Hepoed rasdomenlly
Line Number 345
& °® for (int i=0; i<stepSize; i++){ | 7233
L]
» - . o Line Number 346
4 » ° myModel.step (distance) ;
;’ °
. ® ' 9641
I SO e L [Line Number 347
i P » ” » numO£Clusters[i] = myModel.getNumClusters () ;
’ e o d } 11.0
L e Y
- Line Number 353
(a) (b) Arrays.sort (numofClusters) ;
Figure 5: (a) Clustering in the model. (b) Spontaneous 8213
Symmetry Breaking in the model. Line Number 354
int medianNumberOfClusters = numOfClusters[stepSize/2];

It is claimed that the only model parameter with a Figure 6: The causal program slice with threshold .6 with
strong influence on Spontaneous Symmetry Brealdng i respect to line 354, the computation of the median
the amount of randomness applied to a particle’s number of clusters.
orientation [16], [9].

We apply CPS to the Self-Driven Particle Model to The function containing line number 354 comprises
determine which input parameters influence 57 lines of source code. Applying static program
Spontaneous Symmetry Breaking, how those inputslicing to the program state representing the
parameters cause state changes in variables in thenexpected behavior, the computation of
model’'s source code, and how the state changes inredi anNunber Of Cl ust er s in line 354, reduces
those variables create Spontaneous Symmetrythe number of statements in the source code that
Breaking. CPS quantifies the influence of eachalde influence the unexpected behavior to 36. ApplyifRSC
state change on other variable state changes. éds, with a causal influence threshold of 0.6 to the
variable state change can be mapped back to thecomputation of nedi anNunber Of Gl usters in
statement in the model source code that caused théine 354 reduces the number of statements to seven!
variable to change state. Thus, CPS reveals whichFurthermore, the SME is guaranteed that these seven
statements in the model source code, beginning withstatements have the strongest influence on the

computation of the unexpected behavior. state ofmyModel . maxd ust er | D to one less than
Figure 6 shows that the two input parameters the number of clusters in the model.
randommess andr adi us which are used to create

the variablemyModel have a strong causal influence Line Number 119

on the number of clusters in the modehndommess e e st ol

is the amount of randomness in particle orientatind s @ A A e A o

radi us is the interaction radius around a particle.
Recall, a particle identifies other particles witithe [randonTern = o 1e() + }
interaction radius and chooses its own orientation Eandnass R nnss ST
based on the average of those particles.) 6281

Figure 6 also shows that the callsgbep (line 346)
in the conditional loop statement changes the sihte
nmyModel . This call has a strong causal influence on
the number of clusters in the model. The call to
get Nunber OF Cl ust er s uses the state change of 10
nmyModel caused bystep to change the state of
nunber Of Cl usters[i].

Figure 6 reveals line 347 also has a strong causa[
influence on the number of clusters in the model. T
better understand the influence of the variabléesta =
and program statements in the functiatsep, and
get Nunber Of Cl usters, on the number of
clusters, we apply CPS again to each function. The
result of applying CPS to thet ep function, with
respect to the _computation Of Figure 7: The causal program slice with a threshold of .6
medi anNunber 0 Cl usters in line 354, for & o the function step with respect to line 354.
causal influence threshold of 0.6, is shown in FegL.

Results of applying CPS 10 The state ofandonifer m a variable affected by
get Nurmber O Ol ust er s are discussed later. nyMdel . randormess has a strong causal
Figure 7 shows the state changes that occur in thenfiyence on the number of clusters. This is cdesis

step function that influence the number of clusters. ith previous literature on self-driven particle dets
Notg particles are d.|V|ded into clust(_ers by thection [18], [10]. A large random term does not allow the
assignd usters in G usterAssignment. We particles to organize into clusters, resulting itaaye
apply CPS to the call tassi gnC usters which numper of clusters. This reflects the causal imfaesof
reveals that a state change to a variable in fomcti the model input parameter andonmenss on

get l\b| ghbor SWt h| nRad| us haS a Strong Spontaneous Symmetry Breaking_

influence on the number of clusters. This influerca There is On|y one state Change that occurs in the
reflection of the causal influence of the radius get Nunl ust ers function;nunber Of Cl ust er s
parameter. Particles with a large interaction raidite is assignedraxC uster I D + 1. The effect of this
able to identify more neighbors to include in asté, state change on the number of clusters is already
which limits the total number of clusters in the dab quantified, and explains the high causal influence
and does not result in Spontaneous Symmetryyy,npdel . step has onnunO¥ O usters[i] in
Breaking. Conversely, a small interaction radiusihs Figure 6. The function cattyModel . st ep changes

in many clusters of a small number of particles and {he state ofmyMbdel . maxd uster D and then
helps cause Spontaneous Symmetry Breaking. Figure §megiately following that assignment the value of
also shows thahssi gnCl ust er s returns an array myModel . maxCl usterID + 1 is assigned to
which holds the number of particles in each cluster | rcf 0 ust ers[i]. These two function calls

the model. The array is sorted and ., ,nt the number of clusters at each time stepstore
nmyModel . maxCl ust er | D is then set to the index the result imurof C ust er s.

of the last array component. This statement chathges The remainder of Figure 6 is fairly simple. Theagrr

int [] clustersArray = ClusterAssignment.assignClusters (this);

Line Number 148 }

Line Number 149
Arrays.sort(clustersArray) ;

Line Number 150 }

maxClusterID = cl rray.length -1;

-

nunOf Cl ust er s is sorted and then the median value [6] A.G. Garcia, "Orthogonal sampling formulas: aified
is taken. Currently, CPS records the state of eaydry ~ @Pproach”SIAM Reviewt2, September 2000, pp. 499-512.

taking its arithmetic mean. This is not generatlgal; [7] R. Gore, P. F. Reynolds, L. Tang, and D.C. Bmg

improving this assumption is future work. . “Explanation Exploration: Exploring Emergent Belwa,
The claim of previous authors that randomnesses th proceedings of the 2007 Conference on Principles of

primary causal factor in determining number of Advanced and Distributed Simulatiofune 2007.

clusters, while correct, has been demonstratedeto b

incomplete by our application of CPS. Other fagtor [8] R. Gore and P. F. Reynolds, “Applying Causdetance
in particular interaction radius, have significant to Understand Emergent BehavioPtoceedings of the 2008

. .) Winter Simulation ConferencBecember 2008.

influences themselves. A user equipped with the

broader understanding of influences on clustering [9] C. Huepe, M. Aldana, “Intermittency and Clusteyiin a
provided by CPS, possesses greater insight into theSystem of Self-Driven ParticlesPhysical Review Letters
behavior of the model. 92:(16), 2004.

. [10] W. L. Loh. “On Latin Hypercube SamplingAnnals of
5. Conclusion Statistics24:(5), 1996, pp. 2058-2080.

Our goal is to design and develop an efficient and [11] Montgomery, D.C.Design and Analysis of Experiments
effective approach to support SME understanding of 6th Edition Wiley & Sons, Indianapolis, IN, 2004.
unexpected model behaviors. We have improved the
capabilities of the previously published approd€B,
by offering SMEs more insight into unexpected model
behavior with less required SME information. CPS [13] S. Rapps, and E. J. Weyuker, “Selecting safwiast
offers SMEs the following capabilities: 1) automat data using data flow informationlEEE Transactions of
identification of all variables in the model thatayn Software Engineering1:(4), April 1985, pp. 376-375.
influence the computation of the unexpected behavio
2) capture of state changes throughout model execut
for each of the identified variables, 3) quantifica of
influence each state change in a variable has en th[15] F. Tip, “A Survey of Program Slicing Technicgie
unexpected behavior and 4) mapping of each stateJournal of Programming Languagé&s(3), pp. 121-189.
change of each variable to the statement in theetizod

source code that caused the variable to change stat ~ [16] T. Vicsek, A. Czirock, E. Ben-Jacob, I. Cohemd O.
Shochet, “Novel type of Phase Transition in a Systef

Self-Driven Particle”Physicsal Review Lettei®, 1995.

[12] Pearl, J.Causality: Models, Reasoning, and Inference
Cambridge Univ. Press, Camebridge, MA, 2000.

[14] Spirtes, P., Glymour, C., and Scheines,CRusation,
Prediction, and SearctSpringer Verlag, NY, 2001.

6. References

[17] S. Wazziruddin, P.F. Reynolds and D.C. Broddme
[1] A. Baciu, A. Anason, K. Stratton, and B. Stroifhe Process of Coercing Simulations”, Proceedings @32Pall
Smallpox Vaccination Program: Public Health in agefof Simulation Interoperability Workshop, Orlando, FA003.
Terrorism Inst. of Med. of Natl. Acad., Wash., D.C., 2005.

[18] M. Weiser, “Program Slicing"Proceedings of the 5th
[2] A. E. Cha, “Computers Simulate Terrorism’s Extres”, Conference on Software engineeriag81, pp. 439-449.
Washington PosWashington, D.C., July 4, 2005, pp. Al.

[19] A. Zeller, “Isolating Cause-Effect Chains from
[3] Cohen, J.Statistical power analysis for the behavioral Computer Programs’RProceedings of Symposium on th& 10
sciencesl.. E. Associates, Philadpelphia, PA, 1988. Symposium on Foundations of Software Enginee2062.

[4] T. Eisenbarth, R. Koschke, and D. Simon, “Lduogt
Features in Source CoddEEE Transactions on Software
Engineering29:(3), March 2003, pp. 210-222.

[5] S. Eubank, H. Guclu, A. Kumar, M. V. Marathe, A
Srinivasan, Z. Toroczkai, and N. Wang, “Modelingatise
outbreaks in realistic urban social networksNature
2541:(429), November 2004, pp. 180-184.

