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Abstract 

 
Unexpected model behaviors need explanation, so 

valid behaviors can be separated from errors. 
Understanding unexpected behavior requires 
accumulation of insight into the behavior and the 
conditions under which it arises. Explanation 
Exploration (EE) has been presented to gather insight 
into unexpected behaviors.  EE provides subject matter 
experts (SMEs) with the capability to test hypotheses 
about an unexpected behavior by semi-automatically 
creating conditions of interest under which SMEs can 
observe the unexpected behavior. EE also reveals the 
interactions of identified variables that influence the 
unexpected behavior. Causal Program Slicing, 
improves EE by: automatically identifying all variables 
in the model that may influence the unexpected 
behavior, quantifying how the state changes in those 
variables influence the unexpected behavior, and 
mapping the quantified state changes in the variables 
to the statements in the model’s source code that cause 
change in state. These capabilities require less SME 
knowledge and provide more insight than EE.  

 
 

1. Introduction 
 

Computational models are being used more and 
more to predict potential outcomes of systems 
involving human lives and costly resources. Generally 
when computational models are used to predict 
outcomes uncertainty exists about conditions affecting 
the system being modeled, and about the model itself. 
As a result, subject matter experts (SMEs) often 
experience unexpected program behaviors and must 
then explore whether the behaviors reflect an error or 
an unexpected behavior of the system being modeled.  

Recently, the inability of researchers to explain the 
results of a developing computational model, Episims, 
has led to public policy debate. Episims models the 
nationwide spread of the smallpox virus under various 
vaccination strategies [5]. Previous established models 
of the smallpox virus show that a targeted vaccination 
strategy, where individuals most likely to spread the 

disease are targeted for vaccination, manages disease 
spread as well as a mass vaccination for the entire 
population.  However, the results of Episims show that 
in the event of a smallpox outbreak the disease spread 
under a targeted vaccination strategy is much more 
severe than the mass vaccination strategy. The 
difference between these predictions has led to policy 
debate over "whether or not it's necessary to synthesize 
enough smallpox vaccine for the entire country" [2].  

The Institute of Medicine of the National Academies 
has published a collection of critical opinions of the 
predictions from Episims. The chief complaint is that 
the model developers cannot provide a clear 
explanation for the difference between their predictions 
under these vaccination strategies and previously 
established estimates [1]. Methodology to facilitate the 
understanding of the behavior of Episims and similar 
models is needed. 

Our goal is to design and develop a novel approach 
to understanding model behaviors that allows SMEs to 
validate or reject unexpected behaviors efficiently, and 
with confidence. “Explanation Exploration” (EE) has 
been introduced [7] for demonstrating that a given 
unexpected behavior is valid. EE allows a SME to test 
hypotheses about the unexpected behavior as a 
modeled phenomenon is driven towards conditions of 
interest. Due to the complexity of models where 
unexpected behaviors frequently occur, the SME often 
does not know how to drive the model to conditions of 
interest directly. The term conditions of interest means 
when a specific condition of the modeled phenomenon 
is maximized, minimized or targeted to an exact point. 

EE has been taken a step further by offering SMEs 
additional insight into the interactions of SME 
identified variables causing unexpected behavior in a 
model [8]. The causal inference portion of EE can also 
be applied to reveal the interactions of identified 
variables in the model which create the specified 
conditions of interest. This allows the SME to 
understand how the model was driven to create the 
specified conditions of interest. 

Causal Program Slicing (CPS) is a program analysis 
technique combining program slicing and causal 



inference that offers more insight into the interactions 
of model variables than EE with less SME supplied 
information. CPS offers the following capabilities to 
facilitate SME understanding of unexpected behavior: 
1) the ability to automatically identify all the variables 
in the model that may influence the computation of the 
unexpected behavior, 2) the ability to capture state 
changes throughout model execution in each of the 
identified variables, 3) the ability to quantify how much 
influence each state change in a variable has on the 
unexpected behavior and 4) the ability to map each 
state change of each variable to the statement in the 
model’s source code that caused the state change.  

CPS is a significant improvement over the causal 
inference portion of EE. CPS does not require the SME 
to identify the variables in the model that influence the 
unexpected, EE does. CPS provides information about 
how each state of a variable influences the unexpected 
behavior. EE only provides information about how one 
state of a variable influences the unexpected behavior. 
Finally, CPS maps each quantified variable state 
change back to the statement in the model’s source 
code that caused the variable to change state. EE does 
not have any notion of mapping variables to statements 
in the model’s source code.  These improved 
capabilities are the major contribution of our work. 

Next, we review work related to and employed by 
CPS. Then we present CPS, describe how we applied it 
to a case study model and summarize our contributions. 
 

2. Related Work 
 

CPS draws on the areas of program slicing, 
sensitivity analysis, causal inference, design of 
experiments, program debugging. We review work in 
these areas and describe how the work relates to CPS. 
 
2.1. Program Slicing 
 

Program slicing is a decomposition technique that 
extracts program statements relevant to a particular 
computation within the program [18]. A program slice 
provides the answer to the question, "What program 
statements affect the computation of variable v at 
statement s?” [15]. 

Both static and dynamic program slicing exist. CPS 
only employs static program slicing. Figure 1(a) shows 
an example program that reads an integer input n, and 
computes the sum and the average of the first n positive 
numbers. If the sum of the first n integers is evenly 
divisible by n the program assigns 1 to x. Otherwise the 

program assigns sum to x. The criterion for a static 
slice is a 2-tuple consisting of {line number of 
statement s, the name of variable v}, where v is the 
variable of interest and s is the statement of interest. 
Figure 1(b) shows a static slice of this program using 
criterion {13, x}.  

 

 
(a)   (b) 

Figure 1: (a) The example program. (b) A static slice of 

the program using criterion {13 ,x}. 

 
As shown in Figure 1(b), all computations not 

relevant to the final value of variable x have been 
“sliced away”. Slices are computed by identifying 
consecutive sets of transitively relevant statements, 
according to data flow and control flow dependences 
[15]. Only statically available information is used to 
compute slices; hence, this is a static slice. 

CPS employs static program slicing to automatically 
identify all statements in the model that may affect the 
unexpected behavior. This ensures that when CPS 
identifies the statements which have the strongest 
influence on the unexpected behavior, each statement 
that can affect the unexpected behavior will have been 
considered. Also, using static program slicing relieves 
the SME from having to identify variables which may 
affect the unexpected program behavior. 

 
2.2. Sensitivity Analysis 

 
Sensitivity analysis has been proposed as a 

methodology to explore the robustness of the behavior 
in a model [11]. The goal behind sensitivity analysis is 
to vary the initial parameters of the model by a small 
amount and rerun the model. This allows the SME to 
understand how sensitive the model is to parameters.  

Sensitivity analysis gives the SME understanding 
about how variations in input parameters affect model 
outputs. Our goal is to move this analysis technique 
from the input-output level of the model to the source 



code level of the model where model variables change 
state. This allows SMEs to understand how the 
variations in the input parameters change the model 
variables in the source code and how the state changes 
in the model variables influence model behavior. 
Performing this analysis at the source code level of the 
model allows us to quantify the influence of a 
variable’s change in state on an unexpected model 
behavior or another variable’s state. These quantified 
state changes can be mapped to the statements in the 
model’s source code that cause the variables to change 
state. This approach to program analysis is the major 
contribution of our work. 

 
2.3. Causal Inference 

 
Causal inference procedures identify the causal 

structure of deterministic and stochastic systems. The 
procedures use the Causal Markov Condition to 
produce a causal theory explaining the cause-effect 
relationship of the variables of interest. The Causal 
Markov Condition is that “a variable X is independent 
of every other variable except X’s effects conditional 
on all of X’s direct causes [14].” A causal theory 
consists of a causal model and a set of parameters 
which specify how each variable is influenced in the 
causal model. A causal model is a directed acyclic 
graph, with a 1-1 mapping between vertices in the 
graph and variables of interest. A variable X is said to 
have a causal influence on a variable Y if and only if a 
directed path exists from vertex X to vertex Y in the 
causal model. The causal model serves as the basis for 
the causal theory. Each edge in the causal model is a 1-
1 mapping with an element of the set of parameters 
associated with the causal theory. Each parameter 
specifies the strength of the causal influence (the 
absolute value of the correlation between X and Y) 
induced by the corresponding link [14], [12]. 

CPS employs causal inference as the sensitivity 
analysis mechanism to identify how strongly a given 
state of a variable influences the unexpected behavior 
or another variable’s state. The strength of a causal 
influence is measured as the absolute value of the 
correlation coefficient between the two variable states. 
The absolute value of a correlation coefficient lies 
between [0, 1] inclusive. Using the correlation 
coefficient and conditional independence to measure 
causality comes from causal inference [14], [12].  

Causal inference allows CPS to build chains of 
variable states which specify how the variable states 
influence each other and the unexpected model 

behavior. Each of these variable states can be mapped 
back to the statement in the model’s source code which 
caused the variable to change state. This creates a chain 
of statements specifying how the statements influence 
each other and the unexpected behavior. 

 
2.4. Design of Experiments 
 

Design of Experiments (DoE) refers to experimental 
methods used to quantify indeterminate measurements 
of factors and interactions through observance of 
forced changes made methodically as directed by 
mathematically systematic tables [11].  
CPS varies model input parameters to collect samples 
for each of the statements in the model’s source code 
which can affect the unexpected behavior. This step of 
CPS relies on DoE models to efficiently and accurately 
configure the set of input parameters. The set of input 
parameters is used to execute the model to collect 
samples for each state of each model variable which 
may influence the behavior . 
 
2.5. Delta Debugging 
 

Delta Debugging [19] closely matches our goal of 
efficiently understanding the causes of anomalous 
program behavior. Delta Debugging is an automated 
approach to program debugging that isolates the causes 
of failing test cases systematically. A program run that 
passes a test case and one that fails the same test case 
are required to apply the algorithm. The cause of 
failure is isolated by assessing outcomes of altered 
executions of the program to determine changes in the 
program state that cause differences in test outcomes. 

None of these techniques are applicable to stochastic 
software or relate how variations in input parameters 
cause program statements to determine the program 
output. Also, these techniques do not identify 
statements which have the strongest influence on a 
software behavior. CPS addresses each of these issues. 

 

3. Causal Program Slicing (CPS) 
 

Previously, “Explanation Exploration” (EE) [7] was 
introduced for exploring the possibility that a given 
unexpected behavior is valid. EE allows a SME to test 
hypotheses about an unexpected behavior as a modeled 
phenomenon is driven semi-automatically, employing 
COERCE optimization methods [17], towards 
conditions of interest. EE supports SME insight into 
interactions among identified variables causing 



unexpected behavior [8], particurally the interactions 
which create the specified conditions of interest.   

Causal Program Slicing (CPS) offers more insight 
into the interactions of model variables and source 
code statements than EE, and requires less SME input. 
CPS offers the following capabilities to facilitate SME 
understanding of unexpected behavior: 1) automatic 
identification of all variables in the model that may 
influence the computation of the unexpected behavior, 
2) capture of state changes throughout model execution 
for each of the identified variables, 3) quantification of 
influence each state change in a variable has on the 
unexpected behavior and 4) mapping of each state 
change of each variable to the statement in the model’s 
source code that caused the variable to change state. 
EE has been successful in assisting SMEs with 
understanding and validating unexpected behaviors [7], 
[8]. We believe the improved insight offered by CPS 
will provide superior SME assistance and yield even 
more successful results. We discuss the details of these 
improvements here. 

 
3.1. Identifying and Preprocessing Statements 

 
CPS begins with the SME identifying the state of the 

model that represents the unexpected behavior. The 
program statement in the model’s source code at which 
this state can be observed is identified by its line 
number, L. The variable storing the value of interest 
related to the unexpected behavior is identified by the 
variable, V. Static program slicing is then applied using 
the static slicing criterion {L, V}. The static program 
slice will yield all the statements in the model’s source 
code containing variables that may influence the state 
of the model representing the unexpected behavior. 
The static program slice ensures all statements 
containing variables that can influence the unexpected 
behavior are considered. Also it greatly reduces the 
number of statements that need to be considered in 
understanding the unexpected behavior. The list of 
statements in the static program slice is passed to the 
preprocessor. 

CPS preprocesses model source code and inserts 
statements to capture state changes of variables in the 
static program slice. The inserted code collects the 
value of a variable in an identified program statement 
before and after the execution of the program 
statement. Thus state changes in program statement 
variables are mapped to model source code. The 
collected variables’ values serve as samples which can 
be analyzed to determine the influence a variable’s 

state has on the unexpected behavior or the state of 
another variable. Collection of values of variables as 
the variables change state throughout the model 
execution, and quantifying the influence the state 
changes in the variables have on the unexpected 
behavior or on each other is central to our work. Each 
quantified variable state changes can be mapped back 
to the statement causing the variable to change state. 

Currently, three different types of program 
statements can be included in a static program slice, as 
depicted in Figure 2. This statement taxonomy is 
adapted from [13]. Any input statements included in 
the slice are treated as assignment statements to the 
variable storing the input value. Output statements are 
not included in the taxonomy because they cannot 
affect the value of an unexpected behavior. Conditional 
loop statements and conditional control-flow 
statements are very closely related and can be reduced 
to one another based on the definitions in Figure 2. 
However, separating conditional loop statements from 
conditional control-flow statements eases the 
explanation of how these statements are handled by the 
preprocessor. For the remainder of this section a 
variable on the left-hand side of an assignment 
statement is referred to as y, as in Figure 2. 

 

 
Figure 2: The three different types of program 

statements distinguished by the CPS preprocessor. 

 
Assignment statements occurring outside of 

conditional loop statements or conditional control flow 
statements are the simplest case for the preprocessor to 
handle. The preprocessor inserts code that maps the 
value of y to the assignment statement, and the 
preprocessor inserts code that collects the value of y 
after the statement is executed.  

Assignment statements that occur inside conditional 
loop statements but outside conditional control-flow 
statements are a more complex case for the 
preprocessor to handle.  For each assignment statement 
with a y that is declared outside the scope of the 
conditional loop the preprocessor inserts source code 
that maps the value y to the assignment statement. The 
value of y is also mapped to the conditional loop 
statement the assignment statement is nested in. Then 
for each of the mapped statements the preprocessor 



inserts source code immediately outside of the 
conditional loop to collect the value of each y after the 
entire loop is executed. The state of an assignment 
statement with a y declared inside the conditional loop 
does not exist outside the loop and thus does not need 
to be collected. The nesting of conditional loop 
statements is currently ignored in CPS. Assignment 
statements in nested conditional loops are handled as if 
they were assignment statements in non-nested 
conditional loops.   

Assignment statements that occur inside a 
conditional control-flow statement but outside a 
conditional loop statement are a complex case as well. 
First, the preprocessor only considers those assignment 
statements with a y that is declared outside the scope of 
the conditional control-flow statement. Reasoning for 
this approach shadows that for the conditional loop 
statement case. Next, the preprocessor groups 
assignment statements with the same y located in 
different paths (if/else) of the conditional control-flow 
statement. The pairing ensures that the state of a 
variable is sampled regardless of the path taken through 
the statement during execution. A y in an assignment 
statement that cannot be properly grouped cannot be 
sampled.  Otherwise an unequal number of samples for 
some variable states could occur. 

If the conditional control-flow statement has more 
than two possible paths the preprocessor attempts to 
find a group of assignment statements. Each 
assignment statement in the group must come from a 
different path and size of the group must be equal to 
number of possible paths in the control-flow statement. 
This ensures a program statement is sampled for every 
possible execution.  

For the assignment statements in conditional control-
flow statements that can be properly grouped the 
preprocessor inserts code to map the variable y back to 
the group of assignment statements. The value of y is 
also mapped to the conditional control-flow statement 
the assignment statements are nested in.  Next, the 
preprocessor inserts code to collect the value of y after 
each assignment statement is executed. Due to the 
grouping each assignment statement in the group will 
lie on a different path of the conditional branch. This 
approach handles nested conditional control-flow 
statements without issue. At each level of nesting the 
preprocessor applies the steps previously described. 
Code is inserted at each level of nesting to collect 
samples and perform the proper mapping for those 
assignment statements that can be properly grouped.  

Assignment statements inside an arbitrary nesting of 

conditional loop and conditional control-flow 
statements are treated by backtracking and applying the 
previously described approach for each type of 
statement starting at the deepest level of nesting. 
However, the preprocessor only inserts code to map the 
program statements to y and collect the value of y when 
all levels of the nesting have been processed. This is 
due to the inability of CPS to process nested 
conditional loop statements. Remedies present 
opportunities for future work. 

 
3.2.  Model Execution and Causal Inference 

 
Once the preprocessing step is complete the SME 

must identify a set of input parameters to explore. The 
set of input parameters will be varied to determine how 
changes in them change the state of the variables in the 
model’s source code. We strongly encourage users of 
CPS to employ Latin hypercube sampling, orthogonal 
sampling, or another published sampling approach that 
provides efficient and equal density coverage of the 
search space for a given number of samples [10], [6]. 

CPS uses the set of input parameter configurations 
and the code inserted by the preprocessing to execute 
the model and collect the samples for each state of each 
variable in the static program slice.  

Next, CPS quantifies the influence of a variable state 
on unexpected behavior or another variable state by 
applying causal inferencing to the samples of the 
variables’ states. The result is a chain of variable states 
which specify how each variable state influences 
others, and the unexpected model behavior. Recall, the 
strength of a causal influence is measured as the 
absolute value of the correlation coefficient between 
two variable states. Using the correlation coefficient 
and conditional independence to measure causality is 
based on previous causal inference research [14], [11].  

Using data stored by the preprocessor, each variable 
state that is over the user-specified threshold is mapped 
back to the program statement that caused the 
variable’s state to change. Finally, a graph of the chain 
of program statements that have a causal influence on 
the unexpected behavior is displayed to the SME. The 
graph is annotated with the causal influence each 
program statement has on unexpected program 
behavior or another program statement over threshold. 
The graph focuses SME attention on understanding 
those statements in the model’s source code with the 
strongest causal influence on the unexpected behavior. 

CPS is configurable. The SME identifies the 
threshold causal influence a variable state must have on 



the unexpected behavior, or on another above threshold 
variable state which influences the unexpected 
behavior to be included in the slice. Given a causal 
influence z, z has no influence if 0.0 ≤ z < 0.1, a weak 
influence if 0.1≤ z< 0.3, a moderate influence if 0.3 ≤ z 
<0.5, and a strong influence if 0.5 ≤  z ≤1 [3]. 

The SME also configures a maximum depth of 
function calls that CPS should search to identify those 
variable states which have a causal influence on the 
unexpected behavior.  

 
3.3. Applying CPS to a Small Example 
 

To help elucidate CPS, process we apply it to the 
program in Figure 1(a).  The work of the preprocessor 
is shown in Figure 3. The names array maps 
statements to state changes in variables. The samples 
array records the value of the state change. 

 

 
Figure 3: The result of preprocessing Figure 1(a) with 

respect to the state of the variable x in line number 13.  

 
CPS proceeds as follows: 
1. The user identifies the value of x in line 13 as the 

program state capturing the unexpected behavior. 
2. The user configures CPS to only collect those 

variable states within the same function that affect 
the value of x in line 13.  The user also specifies a 
causal influence threshold of .6, this is the minimum 
influence a variable state must have on the value of 
x in line 13 or on another variable state which has 
an influence ≥ .6 on the value of x in line 13. 

3. The causal program slicer initiates static program 
slicing with the slicing criterion {13, x} to 
determine the program statements, shown in Figure 
1(b) that influence the value of x in statement 13.  

4. For program statements 1-4 the preprocessor inserts 
code to map the state of the variables n, i, x 
and sum back to their respective program 
statements. Code is inserted by the preprocessor to 
collect the state of each variable after each statement 
is executed.  

5. The preprocessor identifies statement 6 as a 
conditional loop. The preprocessor inserts code to 
map this state of sum to statements 6, 7 and 9. 
Similarly, the preprocessor inserts code to map this 
state of i to statements 6, 8, and 9. Code to collect 
the state of sum and i is inserted after the end of 
the conditional loop in statement 9.  

6. The preprocessor identifies statement 10 as a 
conditional control flow statement. It pairs the x in 
statement 11 with the x in statement 12 and inserts 
code to map this state of the variable x with 
statements 10, 11 and 12. Code to collect the state 
of variable x after the end of the conditional 
control-flow in statement 12 is added.  

7. The user performs orthogonal sampling to generate 
1,000 different values for input parameter n, and 
runs the program for each of the generated values. 
The values for n range between 1 and 10,000. 

8. CPS performs causal inference on the generated 
samples. CPS outputs a causal graph including each 
variable state with an influence ≥ .6 on the value of 
x in line 13 or on another variable state which has a 
causal influence ≥ .6 on the value of x in line 13. 

9. Each variable state is mapped back to the program 
statement that causing the variable to change state. 
The causal graph containing only the program 
statements with the strongest causal influence on the 
value of x in line 13 is shown in Figure 4.  
The user gains insight from Figure 4. The initial 

value of n, and the state of sum, where the integers ≤ n 
are added together have the strongest influence on the 
value of x in line 13.  
 

 
Figure 4: The causal program slice for Figure 1(a) with 

slicing criterion {13, x} and a threshold of causal 

influence of .6. 

This example is not meant to be representative of an 
actual program with unexpected behavior, but to 



illustrate how CPS works. Next, we present a case 
study where CPS is rigorously applied. 
 

4. CPS and the Self-Driven Particle Model 
 

To evaluate CPS we conducted a case study using a 
self-driven particle model [16], exhibiting unexpected 
behavior. In the self-driven particle model particles 
interact on a 2-dimensional torus according to a simple 
rule.  Particles move at a constant speed, and their 
orientation is set to be the average orientation of all 
particles within an interaction radius plus a random 
term. Under most parameterizations particles form 
clusters when each follows the given set of rules. 
Figure 5(a) shows a typical model execution where 
three clusters have formed. Color is only used to 
distinguish particles from one another. However, under 
some parameterizations the particles exhibit a different 
behavior. Rather than joining a distinct cluster, each 
particle roams in a random walk.  This behavior is 
called Spontaneous Symmetry Breaking [16], [9]. This 
is shown in Figure 5(b).   

 

 
(a)   (b) 

Figure 5: (a) Clustering in the model. (b) Spontaneous 

Symmetry Breaking in the model.  

 
It is claimed that the only model parameter with a 

strong influence on Spontaneous Symmetry Breaking is 
the amount of randomness applied to a particle’s 
orientation [16], [9].   

We apply CPS to the Self-Driven Particle Model to 
determine which input parameters influence 
Spontaneous Symmetry Breaking, how those input 
parameters cause state changes in variables in the 
model’s source code, and how the state changes in 
those variables create Spontaneous Symmetry 
Breaking. CPS quantifies the influence of each variable 
state change on other variable state changes. Also, each 
variable state change can be mapped back to the 
statement in the model source code that caused the 
variable to change state.  Thus, CPS reveals which 
statements in the model source code, beginning with 

input parameters, have the strongest influence on 
Spontaneous Symmetry Breaking. 

The program state representing Spontaneous 
Symmetry Breaking is where the number of clusters in 
the model is computed. If particles are tightly clustered 
there will be very few clusters in the model. If particles 
are roaming the torus in a random walk there will be 
almost as many clusters are there are particles. Because 
many time steps of the model form a sample, we use 
the median number of clusters in the model across all 
the time steps. Line 354 captures the program state of 
interest. Figure 6 is the result of applying CPS with a 
causal influence threshold of 0.6.    

 

 
Figure 6: The causal program slice with threshold .6 with 

respect to line 354, the computation of the median 

number of clusters. 

 

The function containing line number 354 comprises 
57 lines of source code. Applying static program 
slicing to the program state representing the 
unexpected behavior, the computation of 
medianNumberOfClusters in line 354, reduces 
the number of statements in the source code that 
influence the unexpected behavior to 36. Applying CPS 
with a causal influence threshold of 0.6 to the 
computation of medianNumberOfClusters in 
line 354 reduces the number of statements to seven! 
Furthermore, the SME is guaranteed that these seven 
statements have the strongest influence on the 



computation of the unexpected behavior. 
Figure 6 shows that the two input parameters 
randomness and radius which are used to create 
the variable myModel have a strong causal influence 
on the number of clusters in the model.  randomness 
is the amount of randomness in particle orientation and 
radius is the interaction radius around a particle. 
Recall, a particle identifies other particles within the 
interaction radius and chooses its own orientation 
based on the average of those particles. 

Figure 6 also shows that the call to step (line 346) 
in the conditional loop statement changes the state of 
myModel. This call has a strong causal influence on 
the number of clusters in the model. The call to 
getNumberOfClusters uses the state change of 
myModel caused by step to change the state of 
numberOfClusters[i]. 

Figure 6 reveals line 347 also has a strong causal 
influence on the number of clusters in the model. To 
better understand the influence of the variable states 
and program statements in the functions step, and 
getNumberOfClusters, on the number of 
clusters, we apply CPS again to each function. The 
result of applying CPS to the step function, with 
respect to the computation of 
medianNumberOfClusters in line 354, for a 
causal influence threshold of 0.6, is shown in Figure 7. 
Results of applying CPS to 
getNumberOfClusters are discussed later. 

Figure 7 shows the state changes that occur in the 
step function that influence the number of clusters. 
Note particles are divided into clusters by the function 
assignClusters in ClusterAssignment. We 
apply CPS to the call to assignClusters which 
reveals that a state change to a variable in function 
getNeighborsWithinRadius has a strong 
influence on the number of clusters.  This influence is a 
reflection of the causal influence of the radius 
parameter. Particles with a large interaction radius are 
able to identify more neighbors to include in a cluster, 
which limits the total number of clusters in the model 
and does not result in Spontaneous Symmetry 
Breaking. Conversely, a small interaction radius results 
in many clusters of a small number of particles and 
helps cause Spontaneous Symmetry Breaking. Figure 7 
also shows that assignClusters returns an array 
which holds the number of particles in each cluster in 
the model. The array is sorted and 
myModel.maxClusterID is then set to the index 
of the last array component. This statement changes the 

state of myModel.maxClusterID to one less than 
the number of clusters in the model. 

 
Figure 7: The causal program slice with a threshold of .6 

for the function step with respect to line 354. 
 
The state of randomTerm, a variable affected by 

myModel.randomness has a strong causal 
influence on the number of clusters. This is consistent 
with previous literature on self-driven particle models 
[18], [10].  A large random term does not allow the 
particles to organize into clusters, resulting in a large 
number of clusters. This reflects the causal influence of 
the model input parameter randonmenss on 
Spontaneous Symmetry Breaking. 

There is only one state change that occurs in the 
getNumClusters function; numberOfClusters 
is assigned maxClusterID + 1. The effect of this 
state change on the number of clusters is already 
quantified, and explains the high causal influence 
myModel.step has on numOfClusters[i] in 
Figure 6. The function call myModel.step changes 
the state of myModel.maxClusterID and then 
immediately following that assignment the value of 
myModel.maxClusterID + 1 is assigned to 
numOfClusters[i]. These two function calls 
count the number of clusters at each time step and store 
the result in numOfClusters. 

The remainder of Figure 6 is fairly simple. The array 



numOfClusters is sorted and then the median value 
is taken. Currently, CPS records the state of an array by 
taking its arithmetic mean. This is not generally ideal; 
improving this assumption is future work.  

The claim of previous authors that randomness is the 
primary causal factor in determining number of 
clusters, while correct, has been demonstrated to be 
incomplete by our application of CPS.  Other factors, 
in particular interaction radius, have significant 
influences themselves.  A user equipped with the 
broader understanding of influences on clustering 
provided by CPS, possesses greater insight into the 
behavior of the model. 

 

5. Conclusion 
 

Our goal is to design and develop an efficient and 
effective approach to support SME understanding of 
unexpected model behaviors. We have improved the 
capabilities of the previously published approach, EE, 
by offering SMEs more insight into unexpected model 
behavior with less required SME information. CPS 
offers SMEs the following capabilities:  1) automatic 
identification of all variables in the model that may 
influence the computation of the unexpected behavior, 
2) capture of state changes throughout model execution 
for each of the identified variables, 3) quantification of 
influence each state change in a variable has on the 
unexpected behavior and 4) mapping of each state 
change of each variable to the statement in the model’s 
source code that caused the variable to change state. 
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