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Abstract: Metamodeling refers to modeling a model. There are two metamodeling approaches for ABMs: (1)
top-down and (2) bottom-up. The top down approach enables users to decompose high-level mental models
into behaviors and interactions of agents. In contrast, the bottom-up approach constructs a relatively small,
simplemodel that approximates the structure andoutcomesof adataset gathered from the runsof anABM. The
bottom-upmetamodelmakesbehavior of theABMcomprehensible andexploratory analyses feasible. Formost
users the construction of a bottom-up metamodel entails: (1) creating an experimental design, (2) running the
simulation for all cases specified by the design, (3) collecting the inputs andoutput in a dataset and (4) applying
first-order regression analysis to find amodel that e�ectively estimates the output. Unfortunately, the sums of
input variables employed by first-order regression analysis give the impression that one can compensate for
one component of the system by improving some other component even if such substitution is inadequate or
invalid. As a result themetamodel can bemisleading. We address these deficiencies with an approach that: (1)
automatically generates Boolean conditions that highlight when substitutions and tradeo�s among variables
are valid and (2) augments the bottom-upmetamodel with the conditions to improve validity and accuracy. We
evaluate our approach using several established agent-based simulations.
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Introduction

1.1 Metamodeling refers to modeling a model. Within ABM there are twometamodeling approaches: (1) top-down
and (2) bottom-up. The top down approach enables users to decompose high-level mental models into be-
haviors and interactions of agents. In contrast, the bottom-up approach constructs a relatively small, simple
model that approximates the structure and outcomes of a dataset typically gathered from the runs of a large
and complex ABM.

1.2 While both approaches provide abstractions of an ABM, the purpose of the abstraction is di�erent. Top-down
metamodels are used in the design phase of modeling to capture requirements and organize the architecture
of the ABM,while bottom-upmetamodels are constructed a�er implementation tomake behavior of themodel
comprehensible and exploratory analyses feasible (Goldspink 2000; Bigelow & Davis 2002).

1.3 The process of developing a bottom-up metamodel proceeds as follows: (1) the user creates an experimental
design for the inputs of the ABM, (2) runs the ABM according to the experimental design, (3) collects the results
in a dataset and (4) uses statistical methods to generate a model that enables the user to understand why the
ABM behaves the way it does (Barton 1994; Kleijnen & Sargent 2000; Bigelow & Davis 2002; Friedman 2012).
The most common implementation of this process predicts the ABM output as a sum of input variables using
first-order regression analysis without any bounds on the input space of the model. We refer to metamodels
constructed in this manner as baseline metamodels.

1.4 Unfortunately, baseline metamodels assume that critical thresholds within a single input or relative relation-
ships among multiples inputs of the ABM do not exist. Due to this assumption the baseline metamodel can be
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misleading because it gives impression that one can compensate for a component of the system by improving
some other component even if such a substitution is inadequate or invalid (Friedman & Pressman 1988; dos
Santos & Porta Nova 1999; Kleijnen & Sargent 2000; Meckesheimer 2001; Bigelow & Davis 2002).

1.5 We propose to address the aforementioned deficiency by augmenting widely used first-order regression anal-
ysis with Boolean conditions that highlight when tradeo�s and substitutions among variables are valid. These
Boolean conditions and the regions that they bound reflect critical componentswithin ABMs. The term critical
component refers to a threshold within a single input or amongmultiples inputs that a�ect the behavior of the
ABM. Our approach to capture critical components is inspired by the field of so�ware engineering, which uses
predicates to identify critical components that cause errors within computer programs (Liblit 2007; Gore et al.
2011).

1.6 The remainder of this paper proceeds as follows. First, we present backgroundmaterial needed to understand
our approach and relate it to existing metamodel research. Then we demonstrate how a user employs our ap-
proach to produce an augmented metamodel. Next, we compare the e�iciency and the e�ectiveness of our
augmented metamodels to baseline metamodels for three established ABMs. Our evaluation also compares
the e�ectiveness of our augmented metamodels to alternative metamodels constructed by applying machine
learning methodologies. Finally, we discuss the validity of our analysis and the limitations of our work, sum-
marize our contributions and provide direction for future research.

Background

Top DownMetamodeling

2.1 Recall, top-down metamodels capture requirements and system interactions to serve as a template for the
implementation of an ABM. Two of theses approaches, Agent-oriented-programming (AOP) and Gaia, provide
mechanisms to the decompose agent-behaviors and agent-roles (Wooldridge et al. 2000). Another approach,
the Unified Modeling Language (UML) captures the mental composition of agents through their perception of
their environment, their ability to actwithin their environment, and their reasoning to interpret and solve prob-
lems (Hayes-Roth 1995; Wagner 2003; Jouault & Bézivin 2006). Communication between agents can be cap-
tured using the Agent extension to UML (AUML) (Odell et al. 2000). Agent roles or attitudes can also be repre-
sented through a set of beliefs, desires, and intentions (BDI) using informal or formal semantics (Rao&George�
1991).

2.2 Other top down approaches take a lessmodular approach to describing the components of an ABM. The Agent-
Object-Relationship (AOR) approach employs object-oriented methodologies, including static structure and
structural relationships, dynamic interactions, and functional data flowmethods (Iglesias et al. 1999). The AOR
approach conceptually integrates static, dynamic, andmental components of organizational systems (Shoham
1993). The Kernel MetaMetaModel (KM3) serves as ametamodel definition language by defining a domain defi-
nitionmetamodel (DDMM) of a Domain Specific Language (DSL) (Jouault & Bézivin 2006). Cassiopeia identifies
elementary agent behaviors (Wooldridge et al. 2000) to study the e�ects of global or organizational behaviors
(Collinot et al. 1996).

2.3 While theprocessofabstraction in topdownmetamodeling is related toourwork, itspurpose isorthogonal. Our
goal is to construct bottom-up metamodels from data collected from an ABM to make trends comprehensible
and exploratory analyses feasible. This process is independent of methodology related to the requirements
and architectural design of the ABM. In futurework, wewill explore how the existence of a topdownmetamodel
could improve our approach to constructing bottom-upmetamodels.

Bottom-UpMetamodeling

2.4 Bottom-up approaches focus on creating a model generated from data gathered from the ABM to make trends
comprehensible and exploratory analyses feasible. A myriad of di�erent statistical methods can be applied to
generate bottom-upmetamodels. However, most techniques fall into one of three broad categories: (1) regres-
sion analysis, (2) structural equation modeling or (3) machine learning.
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Regression analysis

2.5 Regression analysis estimates the relationship between an output of the ABM and one ormore input variables.
The structure of themodel is determined byminimizing the variance between themodel and the data by using
as fewvariables aspossible. In this paper,we focusoncreatingbottom-upmetamodelsbyemploying first-order
regression analysis. In these metamodels input variables are only included as linear terms (i.e the first power)
that are combined through addition and subtraction. We choose first-order regression analysis because it is the
most commonly employed method to generate metamodels. Its popularity is largely due to its simplicity and
accessibility. As a result, improving the accuracy and validity of these metamodels will benefit the most users
in the ABM community.

Structural equationmodeling

2.6 Structural equation models reflect a second generation of analysis methodology (Fornell & Larcker 1984; Chin
1998). Within the family of SEM techniques are many methodologies, including confirmatory factor analysis
(Harrington 2008), causal modeling (Bentler 1980), causal analysis (James et al. 1982), simultaneous equation
modeling (Chou&Bentler 1995), andpath analysis (Wold et al. 1987). Tobegin SEMmodeling an expert specifies
the dependency structure among the variables in amodel. This additional information allows for simultaneous
analysis of all the variables in a potential model and which can provide a better fit to the collected data. This
aspect of SEM is di�erent from regression analysis where all the input variables are assumed to be independent
of one another and each potential model must be analyzed incrementally.

Machine learning

2.7 A variety of advanced analysis techniques use machine learning to overcome the deficiencies of structural
equationmodeling and linear regression analysis. Machine learning algorithms employ feature selection, deci-
sion trees, inductive logic programming and neural networks to constructmetamodels that support non-linear
tradeo�samong input variables that traditional analysis techniques cannot identify and/or represent. Recently,
researchers studied the performance of ten di�erent machine learning algorithms for identify the structure of
bottom-upmetamodels for a variety of simulations. They found that combining feature selectionwith decision
trees producedmore accuratemetamodels than any other tested combination ofmachine learning algorithms
(Al Khawli et al. 2015).

2.8 New experimental designs guided bymachine learning have been proposed as well to develop accurate meta-
models more e�iciently. Formalisms based on state machines and features diagrams have been employed to
support the definition of a valid metamodel so it can distinguished from an invalid metamodel (Wooldridge
et al. 2000). Leveraging this representation, inductive logic programming and genetic algorithms are used to
select and deduce valid metamodels that best reflect the data produced by the simulation (Faunes et al. 2013).
In addition, Radial Basis FunctionNetworks (RBFNs) have been used to generate accuratemetamodels by itera-
tively adding new sampling points, to approximate responses with discrete changes according to experimental
designs (Bandaru et al. 2014). Similarly, recent researchhas employedLatin hypercubes to choose the sampling
points and support vector regression (SVR) to develop ametamodel for buckling loads of composite plates un-
der compression (Koide et al. 2013). Finally, other researchers have compared the e�icacy of Neural Networks
(NNs) and RBFNs for constructing ametamodel to estimate overheating and air pollution in buildings produced
fromphysics simulations. NNs are shown to perform around 15%better than RBFNswhen estimating overheat-
ing and air pollution metrics determined in physics models (Symonds et al. 2015).

Statistical debugging

2.9 Our approach to automatically creating augmentedmetamodels employs predicates that are used in statistical
debuggers. Predicates enable statistical debuggers to analyze relationships within and among variable values.
Using predicates the debuggers isolate the causes of so�ware bugs to guide developers in locating and fixing
faults in buggy programs (Liblit 2007; Gore et al. 2015).

2.10 Within statistical debuggers twodi�erent typesof predicates (single variable, scalar pairs) at twodi�erent levels
of specificity (static and elastic) are employed to localize bugs. The choice of type and the specify-level defines
a unique combination of conditions related to a variable(s) that the predicate captures. Two ormore predicates
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can also be combined by generating compound predicates to gather insight about the behavior of a variable(s)
at an additional level of granularity.

2.11 A single variable predicate partitions the set of possible values that can be assigned to a variable x. Single
variable predicates can be created at two levels of specificity: the static level and the elastic level. The most
basic single variable predicates are static. Static single variable predicates are employed to partition the values
for each variablex around the number zero: (x > 0), (x ≥ 0), (x = 0) and (x ≤ 0), (x < 0). These single variable
predicates are referred to as static because the decision to compare the value ofx to 0 ismade before execution
(Liblit 2007). In contrast, the single variable elastic predicates use summary statistics of the values given to
variable x to create partitions that cluster together values which are a similar distance and direction from the
mean. For thevariablexwithmeanµxandstandarddeviationσx, theelastic singlevariablespredicatescreated
are: (x > µx+σx), (x > µx+2σx), (x > µx+3σx), (µx+σx > x > µx−σx), (µx+2σx > x > µx−2σx),
(µx + 3σx > x > µx − 3σx), and (x < µx − σx), (x < µx − 2σx) and (x < µx − 3σx). These predicates
reflect values of variable x that are well above their normal value, within their normal range of values and well
below their normal value (Gore et al. 2015).

2.12 Scalar pair predicates capture the important relationships between two variables that elude single variable
predicates. The most basic scalar pair variables are static. Static scalar pair predicates are employed to par-
tition the di�erence between a pair of variables, x and y, around the number zero: (x − y > 0), (x − y ≥ 0),
(x − y = 0), (x − y ≤ 0) and (x − y < 0). These scalar pairs predicates are referred to as static because the
decision to compare the di�erence between x and y to 0 ismade before execution (Liblit 2007). In contrast, the
scalar pairs elastic predicates use summary statistics of the di�erence between x and y to create partitions that
cluster together valueswhich are a similar distance and direction from themean. For the pair of variablesx and
y with mean di�erence µx − y and standard deviation σx − y, the elastic scalar pairs predicates created are:
(x−y > µx−y+σx−y), (x−y > µx−y+2σx−y), (x−y > µx−y+3σx−y), (µx−y+σx−y > x−y >
µx− yσx− y), (µx− y+2σx− y > x− y > µx− y2σx− y), (µx− y+3σx− y > x− y > µx− y3σx− y),
(x − y < µx − yσx − y), (x − y < µx − y2σx − y) and (x − y < µx − y − 3σx − y). These predicates
reflect di�erences between the values of x and y that are well above the normal value, within the normal range
of values and well below the normal value (Gore et al. 2015).

2.13 Compound predicates reflect any combination of single variable and scalar pair predicates that can be com-
posed using the logical operators ∧ (and) and ∨ (or). For any two predicates P and Q, two compound predi-
cates are tested: (1) the conjunction of the predicates (P&&Q) and (2) the disjunction of the predicates (P ||Q).
Once createdacompoundpredicate canbecombinedwithanother compoundpredicate (ArumugaNainar et al.
2007).

Automatically Creating Enlightened Metamodels

3.1 Despite di�erences in purpose, we hypothesize that the sameBoolean conditions predicate-level statistical de-
buggers employ to localize bugs in so�ware are capable of bounding regions in the input spacewhere tradeo�s
and substitutions among variables are valid. Here, we provide a small example to demonstrate the process and
applicability of our approach. Then we address the implementation of our approach in more detail.

Approach

3.2 Recall, themost common process users follow to create a baselinemetamodel begins with running the ABM for
many trialswhere the inputs are variedaccording to anexperimental design. The resultingoutput data from the
simulation is collected and a statistical model from the data is computed using first-order regression analysis.
Based on the analysis, inputs that appear insignificant are discarded while others that seem redundant are
combined. Ultimately, the bottom-upmetamodel of the simulation is finalized. Recall, we refer to ametamodel
created in this manner as a baseline metamodel. The baseline metamodel is significantly simpler than the
simulation and produces answers in a fraction of the time (Barton 1994; Kleijnen & Sargent 2000; Bigelow &
Davis 2002; Friedman 2012).

3.3 Using this method, the output of the simulation is treated as a sum of terms, where each term is composed
of one or more input variables. This process assumes that critical thresholds within a single input or relative
relationships amongmultiples inputs of the larger simulation do not exist. Due to this assumption the resulting
baselinemetamodel can bemisleading because it gives the impression that one can compensate for one input
of the simulation with another input even if such a substitution/tradeo� is inadequate or invalid (Friedman &
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Pressman 1988; dos Santos & Porta Nova 1999; Kleijnen & Sargent 2000; Meckesheimer 2001; Bigelow & Davis
2002).

3.4 To remedy this shortcomingweaugment the termswithin a baselinemetamodelwith predicates usedby statis-
tical debuggers. Augmenting the terms in a baselinemetamodel encodes the set of valid tradeo�s and substitu-
tions from the ABM into themetamodel. The result is improved accuracy and validity. To elucidate this process
and the utility of our contribution, we demonstrate in a small example how our augmentation approach can
produce an improvedmetamodel.

Simple example

3.5 Anexample helps elucidate our approach to employingpredicates to improve the validity and accuracy of base-
line metamodels. We suppose a user has constructed a simulation calledMEDwhich takes three integers (x, y,
and z) as input and outputs the median value.

3.6 We construct a metamodel for MED by specifying the experimental design. For this example, we specify a full
factorial design for inputs x, y and z over the range of inputs values [1, 3]. Next, we run the simulation for each
of the inputs. The inputs and output of each run are recorded in a data set. Using the data set we create the
single variable, scalar pair predicates at the static and elastic specificity levels for the input variables. Using
these predicates we generate compound predicates to explore the captured input conditions in combination.
Finally, we augment the collected data to show the truth-value of each generated predicate in the data set. The
values of the inputs, an important subset of the generated predicates and the output value of the simulation
are shown in Table 1. We use the convention that if the predicate is true for the inputs a value of 1 is recorded
and if the predicate is false for the inputs a value of 0 is recorded.

3.7 Once the data is collected, analysis is performed to identify those predicates and variables that should be re-
tained, combined and discarded (Calcagno & deMazancourt 2010). The resulting augmented bottom-upmeta-
model identified by our approach is shown in Equation 1:

(X ∗ Predicate1) + (Y ∗ Predicate2) + (Z ∗ Predicate3) =MED (1)

3.8 Given the limited scope of the example one can see that this metamodel exactly predicts theMED’s output
for: (1) the inputs over the range [1, 3] and (2) all inputs that can ever be given to this simulation. While this may
seem like an expected outcome from such a simple example, it is not. Using only sums of the terms created
from the three input variables (x, y and z) to model the output of MED will not accurately predict the output of
the model for unseen inputs because there is no way to capture that the output is not a direct combination of
the inputs. For example, consider the baseline metamodel shown in Equation 2.(1

3
∗X

)
+
(1
3
∗ Y

)
+

(1
3
∗ Z

)
=MED (2)

3.9 Equation 2 does not employ predicates in its regression analysis and as a result itmetamodels themedian ofX ,
Y andZ as thearithmeticmean. Unfortunately, this representationcanbe invalid. For example, parameterizing
Equation 2 withX = 3, Y = 30, and Z = 3, 000 results in a prediction of 337, when the actual system output
is 30. In general, the baseline metamodel enables one to maximize a single variable (i.e Z) to compensate for
shortcomings in the other variables (i.e.X and Y ). The actual simulation does not have this property. Without
the inclusion of predicates to control when substitutions and tradeo�s among variables are valid an accurate
first order linear regression metamodel is not possible.

3.10 It is important to note that goal of this example is not to set a standard of 100% accuracy over observed and
unobserved inputs for our augmented metamodels. Instead, the goal is to demonstrate how our approach
employs predicates to encode some of the valid tradeo�s and substitutions from the ABM into the metamodel
to improve validity and accuracy.

3.11 In the following subsectionweprovidemoredetails about: (1) howpredicates and input variables are combined
within the structure of an augmentedmetamodel and (2) howwe conduct an automated search using a genetic
algorithm to identify the augmentedmetamodel that retains the most information from the ABM.

Implementation

3.12 The MED example in the previous section demonstrates the improvements that are possible if metamodels are
augmented with predicates. However, it also highlights several questions wemust address in the implementa-
tion of our approach. These questions include:
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Input Subset of Generated Predicates Output
Predicate1 Predicate2 Predicate3

X Y Z (X − Y ≤ 0) ∧
(X − Z ≥ 0) ∨
(X − Z ≤ 0) ∧
(X − Y ≥ 0)

(X − Y > 0) ∧
(Y − Z ≥ 0) ∨
(Y − Z ≤ 0) ∧
(X − Y < 0)

(X − Y < 0) ∧
(XZ > 0) ∨
(X − Z < 0) ∧
(X − Y > 0)

MED

1 1 1 1 0 0 1
1 1 2 1 0 0 1
1 1 3 1 0 0 1
1 2 1 1 0 0 1
1 2 2 0 1 0 2
1 2 3 0 1 0 2
1 3 1 1 0 0 1
1 3 2 0 0 1 2
1 3 3 0 1 0 3
2 1 1 0 1 0 1
2 1 2 1 0 0 2
2 1 3 1 0 0 2
2 2 1 1 0 0 2
2 2 2 1 0 0 2
2 2 3 1 0 0 2
2 3 1 1 0 0 2
2 3 2 1 0 0 2
2 3 3 0 1 0 3
3 1 1 0 1 0 1
3 1 2 0 0 1 2
3 1 3 1 0 0 3
3 2 1 0 1 0 2
3 2 2 0 1 0 2
3 2 3 1 0 0 2
3 3 1 1 0 0 3
3 3 2 1 0 0 3
3 3 3 1 0 0 3

Table 1: Experimental Design, Subset of Predicates and Collected Output

1. Themetamodel featured in the example contains three compound predicates applied to three input vari-
ables. What does this imply about the structure of the augmentedmetamodels built for ABMs?

2. What mechanism is used to identify the augmented metamodel that retains the most information from
the ABM?

3.13 The remainder of this section answers these questions in detail.

Structure of themetamodels

3.14 Our approach augments baseline metamodels with predicates. Within an augmented metamodel, each predi-
cate is a Boolean expressions multiplier that is applied to an input variable in the metamodel. In other words,
given a vector of predicates P , and a vector of input variables V , the prediction of the metamodel is the result
of applyingP toV . For example in the augmentedmetamodel for MED shown in Equation 1, predicates 1, 2 and
3 are applied to the termsX , Y andZ respectively.

3.15 This strategy ensures that anymetamodel generated by our approachwill include one predicate for every term
included in the metamodel. This includes cases where qualifying a term with a Boolean condition does not
improve the fit of the model. In these cases a predicate that is universally true will be applied to the input
variable (i.e. x = 0 ∨ x 6= 0). It also includes cases where including a variables does improve the fit of the
model. In these cases a predicate that is universally false will be applied to the input variable (i.e. x > 0 ∧ x <
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0). Furthermore, to ensure that each predicate does not become overly complex we only generate compound
predicates that include a maximum of four Boolean conditions.

Finding the best metamodel

3.16 The process of creating augmented metamodels begins with the data collected from the simulation. First, the
input variables and an output across a set of test cases is used to generate and score the truth-values of the
predicates employed in augmentedmetamodels. Thenusing thedata,weapply, anautomatedmodel selection
approach called glmulti. glmulti uses a genetic algorithm to identify the augmentedmetamodel that retains the
most information from the data collected from the ABM.

3.17 Thegenetic algorithm in glmulti begins by generating an initial populationof 500 first-order augmentedmodels
that match the structure specified in the previous section. Eachmodel in the population is encoded as a string
of 0s and 1s. This encoding indicates which of the possible input variables and predicates in the model are
present (1) and absent (0). The string serves as the model’s chromosome that will undergo adaptive evolution
and each bit in the string is a locus for possible adaption.

3.18 Every generation, each model is treated as a first order linear regression model and the Information Criterion
(IC) of the model of is used to determine the model’s fitness. An indepth discussion of the IC we employ is
provided in the Evaluation section. The fitness of a model is computed using Equation 3 where ICmodel is the
IC value of the current model and ICbest is the best IC in the current population of models.

fitnessmodel = e

(
−(ICmodel−ICbest)

)
(3)

3.19 Based on the previous generation, 500 models in the next generation are produced through three di�erent
genetic operators applied in combination. These operators are: (1) asexual reproduction (45%), (2) sexual re-
production (45%), and (3) immigration (10%).

3.20 Amodel produced by asexual reproduction is simply a copy of its parent. The parent is drawn from the previous
generation with a probability proportional to its fitness. Then the states of some the model’s loci are changed
by mutation. In our implementation, each locus is changed with a 10% probability.

3.21 A model produced by sexual reproduction has two parents whose chromosomes are recombined. Again, par-
ents are drawn from the previous generation with a probability proportional to their fitness. In addition to
recombination, each locus canmutate. Within sexual reproduction mutations occur with 10% probability.

3.22 Amodel produced by immigration has the state of each locus assigned randomly. As a result its application can
produce big changes in the structure of the models that will be fitted (Yang 2004).

3.23 Three rules to definewhen the algorithm should stop looking for bettermodels. The first two rules reflect target
improvements in the best IC and the average IC found in a given generation. In our implementation, if the
observed improvements in the IC are below 0.1, then the genetic algorithm is declared not to have significantly
improved. The final rule reflects how many times in a row a lack of improvement has to occur to declare the
model converged. In our implementation if the best and average IC do not improve above the 0.1 threshold for
five consecutive times we declare convergence and the best model is output.

Evaluation

4.1 Weevaluate thee�iciencyande�ectivenessofour automatedapproach toaugmenting regressionanalysiswith
Boolean conditions that highlight when tradeo�s and substitutions among variables are valid. Recall, these
Boolean conditions and the regions that they bound reflect critical components within ABMs. The term critical
component refers to a threshold within a single input or amongmultiples inputs that a�ect the behavior of the
ABM. First we introduce the three established ABMs we use as subjects in our evaluation. Then we discuss our
experimental setup and our measure of e�ectiveness. Finally, we present the results of our evaluation.
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Figure 1: Boids flocking on a two dimensional landscape based on values given to the following parameters: 1)
number of boids (50), 2) separation (5), 3) alignment (0.8) and 4) cohesion (0.9).

Established subject ABMs

Boids

4.2 Boids models the flocking behavior of birds on a two-dimensional canvas. The term boid refers to a bird like
object. Within the simulation three parameters control the behavior of each boid: separation, alignment and
cohesion. Thedegreeof separationcontrols theextent towhich theboidsavoidcrowdingeachother. Alignment
controls the degree to which each boid steers to the average head of the other boids in the simulation. The
cohesion parameter controls the amount that each boidmoves toward the average position of the other boids.
More complex parameters canbe added, such as obstacle avoidance and goal seeking but they are not included
in the version of the simulation (Reynolds 1987; Gilbert 2004; Epstein 2006; Salge & Polani 2011). The output of
the boids simulation is themean flocking index of the boids calculated over a period of 1,000 timesteps (Quera
et al. 2007). Figure 1 shows a visualization of the Boid ABM.

Schelling’s model of segregation

4.3 The Schelling model of segregation illustrates how an individual’s satisfaction with their neighbors can lead to
segregation. It has been extensively used to study residential segregation of ethnic groups who relocate in ur-
ban areas. In the model, each agent belongs to one of two groups and aims to reside within a neighborhood
populated by similar agents from the same group. Agents in the simulation continually relocate based on their
neighbors. The degree of satisfaction people have is referred to as mean satisfaction. This measures the per-
cent of people that are satisfied living in the current position. The percentage of agents on the landscape that
belong to a group, the density of the landscape and the threshold of each agent’s preference to reside with
similar agents influence themean satisfaction (Schelling 1978; Hatna & Benenson 2012; Hegselmann 2012). Fig-
ure 2 shows a visualization of the Schelling ABM with two groups (red and blue) where a steady state has been
achieved.

Spread of influenza

4.4 The spread of influenza can bemodeled by simulating interactions between agents on a 2-D lattice. In the sim-
ulation 1,000 individuals commute between their home and work over the course of a flu season. At home and
work infections individuals search for susceptible individuals within a specified radius and spread their infec-
tion with a given probability (Carpenter 2004; Dunham 2005; Epstein 2009; O’Neil & Sattenspiel 2010; Parker &
Epstein 2011).

4.5 The results of the model match real-world influenza data. Furthermore, with proper parameterization, the
model can be used to predict the peak number of influenza infections that occur during the course of a given
season. Several parameters control how the flu is spread and determine the peak number of infections during
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Figure 2: The Schelling ABMwith two groups (red and blue).

the course of a given season. These are: the probability with which agents’ infect one another, and the average
number of individuals within a workplace and a home. An image showing the structure of the Influenza Spread
ABM is shown in Figure 3. In Figure 3 the colored circles reflect the four di�erent states an agent canbe in related
to influenza: (S) - Susceptible, (E) - Exposed, (I) - Infected and (R) - Recovered.

Creation of baseline and augmentedmetamodels

4.6 For eachof theagent-based simulationsweconstruct anexperimental designbyapplying Latinhypercube sam-
plingwith 10,000 samples to the simulation’s parameters. A Latin hypercubedesign yields a samplewhere each
of the dimensions of each variable is divided into equal levels and that there is only one point (i.e. sample)
at each level. We use an optimized random procedure to determine the point locations so that good cover-
age of the design space is ensured. Such an experimental design is recommended by (Meckesheimer 2001;
Meckesheimer et al. 2002) in their review of metamodel design and assessment.

4.7 Next, we run each simulation for all of the specified inputs in the experimental design and collect the results.
Once all the data has been gathered we construct predicates. Then using glmulti we generate augmented and
baseline metamodels for each simulation. The name, minimum value and maximum value of the parameters
varied and the output metamodeled for each ABM are shown in Table 2.

E�ectiveness

4.8 To study thee�ectiveness of thebaseline andaugmentedmetamodelsweconsidered twodi�erent Information
Criteria: (1) theAkaike InformationCriterion (AIC), (2) theBayesian InformationCriterion (BIC). Herewe review the
similarities and di�erences of each criterion anddescribewhywe chose to use the BIC tomeasure e�ectiveness
in our evaluation.

InformationCriterion = kp− 2lnL (4)
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Figure 3: A visualization of the Influenza Spread ABM. The colored circles reflect the four di�erent states an
agent can be in related to influenza: (S) - Susceptible, (E) - Exposed, (I) - Infected and (R) - Recovered. Influenza
spreads as agents interact with other agents at work and at home (Dunham 2005).

ABM Parameter Parameter Parameter Parameter Output
Min |Max Min |Max Min |Max Min |Max Output

Boids Flocking # of Boids Separation Alignment Cohesion Flocking Index
1 | 1,000 1 | 20 0 | 1 0 | 1

Schelling Satisfaction
Threshold

% Agents in
One Group

Agent Density Mean Satisfac-
tion

0 | 1 1 | 100 1 | 10

Influenza Spread Infection Rate Work Mean HomeMean Peak # of In-
fections

0 | 1 1 | 100 1 | 10

Table 2: ABM Parameters with Minimum/Maximum Values and ABM Output

4.9 Equation 4defines the form for theAIC andBIC information criterion. Both aremeasures of fitness that estimate
the amount information lost by using ametamodel instead of the data set generated by the ABM. Lower AIC and
BIC values for a metamodel are preferable because they reflect a metamodel where less data is lost from the
ABM.

4.10 Within in Equation4,L is the functionmeasuring the amount of information retainedby themetamodel, p is the
number of terms in themetamodel and k is penalty coe�icient. Given the dynamics of the Equation 4, as k and
p increase, themetamodel needs to retainmore information tomaintain the same IC value. In the computation
of AIC, k = 2. However, in the computation of BIC k is the natural log of the number of data points used to fit
themodel. Recall, we use 10,000 observations for each ABM. This results in a k-value of 9.21 in the computation
of the BIC.

4.11 The di�erent k-values the AIC and BIC penalize the fit of models di�erently. The larger k-value employed in the
BIC penalizes metamodels containing more terms (i.e. predicates and input variables) more heavily than the
AIC. Since our augmented metamodels include predicates they will include more terms than baseline meta-
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Type Metamodel of Flocking Index BIC

Baseline B1∗Boids−B2∗Separation−B3∗Alignment+B4∗Cohesion−ε 205.3

Augmented
A1∗P1∗Boids+A2∗P2∗Separation+A3∗P2∗Alignment+A4∗P2∗Cohesion,
where

204.7

P1 =(Boids> 1.5)
P2 = (0.31 >Cohesion> 0.73) ∧ (0.28 >Alignment> 0.69) ∧
(2.5 <Separation< 12.7)

Table 3: Metamodels and Information Criterion for Boids ABM where B1 = 6.17 ∗ 10−4; B2 = 9.12 ∗ 10−3;
B3 = 1.38;B4 = 1.04; ε = 0.13 andA1 = 7.82 ∗ 10−4;A2 = 5.09 ∗ 10−3;A3 = 0.58;A4 = 0.64; ε = 0.15. The
distribution of ε is Gaussian in both metamodels.

models. Thus, choosing to evaluate the e�ectiveness using the BIC allows us to conservatively measure the
extent to which employing our augmented approach reduces the amount of information lost from the ABM in
the resulting metamodel. This choice is noteworthy. Even when an augmented metamodel more accurately
reflects the data generated from the ABM it will be aggressively penalized because of the predicates it uses to
model the ABM output. As a result, for an augmentedmetamodel to outperform a baselinemetamodel it must
produce results that are significantly more accurate.

4.12 In addition, it is important to recall how the predicates are formed in the augmentedmetamodels. They reflect
the elastic and static conditions formed from single variable, scalar pair and compound predicates generated
from data collected by running the simulation for the experimental design specified in Table 2. Comparing
the input values and the di�erence in input values to zero forms static conditions. Conversely, comparing the
input values and di�erence in the input values to the mean and standard deviations of the values they take on
duringdata collection formelastic predicates. The experimental design is basedonLatin hypercubedesign that
employs an optimized randomprocedure. This ensures good coverage of the input space but also injects some
randomness into the input values that are gathered during data collection.

Boids

4.13 The two metamodels generated for the Boids simulation are shown along with the BIC values of each meta-
model in Table 3. The values of coe�icients and intercepts employed in the model have been moved from the
table into the caption to improve readability. Recall, a smaller BIC value is preferable because it reflects less
information lost from the ABM.

4.14 The BIC values shown in Table 3 demonstrate that augmenting the Boids model with predicates improves the
accuracy of the metamodel. In particular the predicate P2 ensures that if the value of any input variable con-
trolling the Boids flight pattern contributes to the estimation of the flocking index, then all the input variables
controlling the flight patternwill contribute to the estimation. This property prevents anextremevalue frombe-
ing assigned to any input variable to compensate for another. For example, improving the alignment of Boids,
even to an extreme degree, cannot compensate for insu�icient cohesion.

4.15 Wearenot the first researchers to identify this sensitivityof themodel. It hasbeen identifiedbyothers (Stonedahl
&Wilensky 2010). However, our approachautomatically generated anaccuratemetamodel thatmakes this con-
straint (i.e. P2) explicit to theuser. Thebaselinemetamodel doesnot share this constraint. As a result, it enables
users to invalidly maximize or minimize any input variable to overcome an extreme value assigned to another
input variable.

Schelling’s model of segregation

4.16 The twometamodels generated for theSchellingmodel are shownalongwith theBIC valuesof eachmetamodel
in Table 4. The valuesof coe�icients and intercepts employed in themodel havebeenmoved from the table into
the caption to improve readability. Recall, a smaller BIC value is preferable because it reflects less information
lost from the ABM.

4.17 The BIC values in Table 4 show that augmenting the Schelling model with predicates improves the accuracy of
the metamodel. Specifically, the scalar pair predicate P1 employed in the augmented metamodel highlights
a critical threshold that exists between the satisfaction threshold of agents in the model and the percentage
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Type Metamodel of Mean Satisfaction BIC

Baseline −B1∗Threshold+B2∗PrctInOneGroup−B3∗Density+ε 215.4

Augmented
A1 ∗P1∗Threshold+A2 ∗P2∗PrctInOneGroup+A3 ∗P2∗Density−ε, where 213.8
P1 =(Threshold−PrctInOneGroup< 0)
P2 =(Density< 0.38)

Table 4: Metamodels and Information Criterion for Schelling ABM whereB1 = 0.52; B2 = 8.86 ∗ 10−3; B3 =
0.29; ε = 0.38 andA1 = 0.62;A2 = 5.77 ∗ 10−3;A3 = 0.58;A4 = 5.09 ∗ 10−3; ε = 0.04. The distribution of ε
is Gaussian in both metamodels.

Type Metamodel BIC

Baseline B1∗InfRate+B2∗WorkMean+B3∗HomeMean+ε 312.1

Augmented

A1 ∗ P1∗InfRate+A2 ∗ P2∗WorkMean+A3 ∗ P3∗HomeMean+ε, where 310.9
P1 =(InfRate> 0.26)
P2 =[(WorkMean>HomeMean)∧ (WorkMean> 18.4)]
P3 =[(HomeMean>WorkMean)∧(HomeMean> 2.7)]

Table 5: Metamodels and Information Criterion for Influenza Spread ABM where B1 = 482.21; B2 = 2.49;
B3 = 5.13; ε = 0.38 and A1 = 16.32; A2 = 337; A3 = 6.21; A4 = 7.05; ε = 48.76. The distribution of ε is
Gaussian in both metamodels.

of agents in the model that belong to one group. When the mean satisfaction threshold of agents is less than
the percentage of agents that belong to one group, the mean satisfaction level of agents is high. Intuitively,
this makes sense. Both conditions make agents easier to satisfy because: (1) the threshold to be satisfied is
lower and (2) there are more similar agents to surround them. Conversely, once the satisfaction threshold of
agents in themodel exceeds thepercentageof agents that belong toonegroup themean satisfactiondrastically
decreases. To enforce this property in themetamodel the scalar pairs predicateP1 is assigned to both variables
in the augmentedmetamodel that are featured in the condition (Threshold and PrctInOneGroup).

4.18 This non-linear behavior cannot be represented in the baselinemetamodel because it is impossible to compare
the values of Threshold and PrctInOneGroup. As a result the baseline metamodel misrepresents the dynamic
that exists between these two variables and information from the ABM is lost in the metamodel.

Spread of influenza

4.19 The two metamodels generated for the Influenza Spread model are shown along with the BIC values of each
metamodel in Table 5. The values of coe�icients and intercepts employed in themodel have beenmoved from
the table into the caption to improve readability. Recall, a smaller BIC value is preferable because it reflects less
information lost from the ABM.

4.20 Once again the BIC values shown in Table 5 demonstrate that augmenting the Influenza Spread model with
predicates improves the accuracy of themetamodel. In this case a compound predicate that combines a scalar
pairs predicate with a single variable predicate imposes a constraint on themetamodel to improve its accuracy
and validity. Specifically, the compound predicate highlights the relationship between the value of the mean
number of people within a home and the mean number of people within a work place. Within the Influenza
Spread model, the peak number of infections in a given season is largely determined by the opportunity to
spread the infection (Dunham 2005). When agents work with a larger number of agents than they cohabitate
with the number of co-workers dominates the contribution to the number of peak infections. Conversely, when
agents cohabitate with more than they work with the number of cohabitators dominates the contribution to
the number of peak infections. However, in each case there is a quorum on the number of people needed to
provide a significant contribution to the peak number of infections in a season.

4.21 These relationships cannotbe represented inabaselinemetamodelbecause there is nomechanismtocompare
values of input variables against one another or identify thresholds needed in a single variable to achieve a
quorum. Instead input variables are modeled as strictly continuous functions with coe�icients to scale them
to the output. All three metamodels constructed in this manner are invalid and lose a significant information
from the ABM that is retained in an augmentedmetamodel.
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Type ABMMetamodeled BIC

Decision Tree Boids 307.1
Decision Tree Schelling’s Model of Segregation 317.3
Decision Tree Spread of Influenza 480.6

Table 6: E�ectiveness of Decision Tree Metamodels measured by BIC.

Evaluation against machine learningmethodologies

4.22 Our evaluation shows that each augmented metamodel results in a lower BIC than its baseline counterpart.
This is significant; recall a lower BIC means that less information is lost (i.e. more information is retained).
Furthermore, BIC, controls for the number of factors included in each model even more aggressively than the
AIC measure. This means that the constraints included in augmented models retain significantly information
from the ABM even when evaluated under conservative conditions (Bozdogan 1987).

4.23 While theexistenceof this trend isnecessary todemonstrate thee�ectivenessofourapproach it isnot su�icient.
To address this deficiency we evaluate our approach against additional machine learning methodologies that
could be employed to construct a baseline metamodel: (1) decision trees and (2) feature selection.

Decision treemetamodels

4.24 The construction of decision tree metamodels included in our evaluation uses the rpart package available for
the R programming language (Therneau et al. 1997). The rpart package builds decision treemetamodels to pre-
dict the output of the ABM by constructing a binary tree using a subset of the input variables. The construction
process consists of two steps. First a threshold value for the input that best splits the data into two groups is
identified. The data is separated, and then this process is applied separately to each sub-group, and so on re-
cursively until the subgroups either reach a minimum size or until no improvement can be made. The BIC of
the decision tree metamodel resulting from application of rpart is shown in Table 6.

4.25 Table 6 demonstrates that the decision tree metamodels are ine�ective compared to the baseline and aug-
mentedmetamodels shown in Tables 2-5. They result in higher BIC values, which reflectmore information, lost
from ABM. This is due to an assumption within the decision tree methodology. Decision tree construction as-
sumes that the output space can be discretized by hierarchically nesting conditions related to the ABM inputs.
For the ABMs included in our evaluation this is not the case. The output space of each ABM included in our
evaluation is either continuous or discretized into fine-grained intervals. As a result, even when the decision
treemetamodel correctly classifies the output of themetamodel, it does not produce a prediction that is close
to matching the ABM output. Furthermore, the inputs in the ABMs included in our evaluation do not follow a
strictly hierarchical order. Under some parameterizations one inputwill provide the best split of the data. How-
ever, under other parameterizations another inputwill provide the best split of the data. The result of assuming
one inputwill provide the best split of the data for all runs for the ABMs included in our evaluation is an increase
in information lost.

Feature selectionmetamodels

4.26 The construction of feature selection metamodels included in our evaluation uses the caret package available
for the R programming language (Kuhn 2008). The caret package builds a regressionmetamodel that is similar
to a baseline metamodel. The di�erence between a baseline metamodel and a feature selection metamodel
is that a feature selection metamodel is not guaranteed to include all of the input variables while a baseline
metamodel is. This ability of select only the most important variables (or features) in a metamodel can enable
a feature selection metamodel to produce a lower BIC than a baseline metamodel.

4.27 Thecaretpackageuses routine that tracks the reduction in theestimateof errorof themetamodel for each input
variable as it is added to the metamodel. The reduction is used to measure the importance of the input in the
metamodel. High reductions in the estimate or error denote important variables while low reductions denote
unimportant variables. The minimum reduction in error for an input to be included in the metamodel is deter-
mined by the number of inputs in the ABM. The BIC of the decision tree metamodel resulting from application
of caret is shown in Table 7.

4.28 Table 7demonstrates that the feature selectionmetamodels are exactly as e�ective as thebaselinemetamodels
shown in Tables 2-5. This result demonstrates that each of the inputs in the ABMs in our evaluation are impor-
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Type ABMMetamodeled BIC

Feature Selection Boids 205.3
Feature Selection Schelling’s Model of Segregation 215.4
Feature Selection Spread of Influenza 312.1

Table 7: E�ectiveness of Feature Selection Metamodels measured by BIC.

Boids Schelling Model Influenza Spread

0.7408 times 0.4493 times 0.5488 times

Table 8: The number of times the best alternative metamodel is likely to minimize information loss compared
to the as augmentedmetamodel.

tant features. It is important to note that the metamodels included in our evaluation include a relatively small
number of inputs (4, 3, 3 and 3). In future work we will explore how the e�ectiveness of feature selection could
be applied to baseline and augmentedmetamodels for ABMs with more inputs.

Evaluation summary

4.29 Our evaluation shows that each augmented metamodel outperforms its baseline counterpart as well as other
metamodels constructed using machine learning methodology. Despite the existence of this trend it is hard to
conceptualize the improvementprovidedbyour augmentedmetamodels. Toelucidate improvementwedefine
it as is the number of times the best alternativemetamodel is likely to retainmore informationwhen compared
to an augmentedmetamodel. This formula is shown in Equation 5.

4.30 The best alternative metamodel reflects the baseline, feature selection or decision tree metamodel with the
lowest BIC for a given simulation. Using this measure any result greater than 1.0 reflects a situation where the
augmented metamodel is more likely to lose information from the ABM than the best alternative metamodel.
Similarly, any result less than 1.0 reflects a situationwhere the best alternativemetamodel ismore likely to lose
information from the ABM than the augmentedmetamodel.

4.31 Equation 5 is an established means to compare the improvement with respect to BIC of two competing meta-
models (Konishi & Kitagawa 1996). Within the formula BICAUG is the BIC value for the augmented metamodel
and BICALT is the BIC value for the best alternative metamodel.

e

(
BICAUG−BICALT

2

)
(5)

4.32 The results from the computation are shown in Tables 8 and visualized in Figure 4. In each of the simulations,
the best alternative metamodel is less than 0.75 times as probable as the augmented metamodel to minimize
information lost from the ABM. Furthermore, for two of the threemodels it is 0̃.50 times as probable as the aug-
mentedmetamodel to minimize information lost from the ABM. This reflects a significant decrease in accuracy
by using any metamodeling methodology included in our evaluation other than our augmented strategy for
any of the ABMs included in our evaluation.

4.33 In addition to improve accuracy, the inclusion of predicates in the augmentedmetamodel makes the existence
of constraints that limit substitutions and tradeo�s within and among input variables explicit to users. When
users employ the augmentedmetamodels generated for the three established ABMs theywill no longer assume
that one variable can compensate for anotherwhen sucha substitution is inadequateor invalid. This is themost
powerful capability of our augmented metamodels because even if no additional information from the ABM is
retained in an augmentedmetamodel, the validity of the metamodel is still improved.

E�iciency

4.34 Tables 7 shows the amount of wallclock time that is required to construct the best alternative and augmented
metamodels for each simulation included in the evaluation. The slowdown incurred is computed by compar-
ing the time required to create each augmented metamodel to the time required to create the best alterna-
tivemetamodel. Recall, the best alternativemetamodel reflects the baseline, feature selection or decision tree
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Figure 4: The e�ectiveness results in Table 6 visualized. All the results are below the dotted line at 1.0. This
reflects a casewhere each augmentedmetamodel ismore probable tominimize information loss than the best
alternative.

Wallclock Time Boids Schelling Model Influenza Spread

Alternative 90 seconds 62 seconds 73 seconds
Augmented 537 seconds 823 seconds 1,039 seconds
Slowdown Incurred 5.96 times longer 13.27 times longer 14.23 times longer

Table 9: Wallclock time required to generate eachmetamodel.

metamodel with the lowest BIC for a given simulation. In the case where there are multiple best metamodels,
the metamodel with the shortest construction time is chosen. Formally, this measure is shown in Equation 6.

Slowdown Incurred =
wallclockT imeaugmented

wallclockT imealternative
(6)

4.35 Table 9 and Figure 5 show that the construction of augmented metamodels incurs a 10x - 20x slowdown. In
each case, the additional computational time required to construct enlightened metamodels in is spent: (1)
generating the predicates from the experimental design and (2) finding the best statistical model in a search
space with significantly more factors.

4.36 While our approach to creating augmentedmetamodels is less e�icient, it only requiresmachine time not user
time. If users can remain productive while an augmented metamodel is generated, overall e�iciency will be
improved because the user is given a more e�ective metamodel. This rationale has made formal so�ware ver-
ification methods useful despite execution times measured in days and hours (D’silva et al. 2008). Next, we
discuss the validity of our study and its limitations.

Discussion
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Figure 5: Slowdown incurred by generating an augmentedmetamodel as opposed to the best alternativemeta-
model.

Validity

5.1 Validity threats a�ect our evaluation. Threats to internal validity concern factors that might a�ect dependent
variables without the researcher’s knowledge (Schram 2005). The implementations of the simulationswe used
in our studies could contain errors. However, these simulationswere all gathered fromexternal sources, passed
internal code reviewsanda facevalidationof their outputwasperformedbeforeanydatawascollected. Threats
to external validity occurwhen the results of our evaluation cannot be generalized (Schram2005). Whileweper-
formed our evaluations on three established agent-based simulations we cannot claim that the e�ectiveness
observed in our evaluation can be generalized to other agent-based simulations. Threats to construct validity
concern the appropriateness of the evaluation metrics used (Cronbach & Meehl 1955). While the BIC informa-
tion criterion enables the e�ectiveness of our approach to be conservatively evaluated, some users may prefer
di�erent measure of e�ectiveness. However, our general approach to constructing metamodels can still be
applied even if users prefer di�erent measures of e�ectiveness.

Assumptions and limitations

5.2 It is important to note that our evaluation does not include ABMs that are as complex as some that exist in
the wild. This limitation exists because we wanted to employ an established set of ABMs that could be easily
understood in the evaluation. Employing our enhanced validation approach on more complicated ABMs is an
opportunity for future work.
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RelatedWork

6.1 The construction ofmetamodels is not new. Metamodels have been created for a variety of applications includ-
ing: modelingoutputdistributionparameters (Santos&Santos2007), businesspracticeoptimization (McHaney
&Douglas 1997; Liu 2009; Barton&Meckesheimer 2006; Noguera&Watson 2006), logistics (Stearns 1998), com-
plex social systems (Goldspink 2000; Omicini et al. 2008), multi-resolution modeling (Vo et al. 2012), queueing
(Friedman 1989) and estimating artificial neural networks (Fonseca et al. 2003).

6.2 These resultshave improvedaccuracyandvalidityofmetamodels in specificdomainsand/orbyusingadvanced
analyses. However, none of these e�orts have proposed a general approach to address improving accuracy and
validity for first-order linear regression bottomupmetamodels. Several researchers have attempted to address
this issuebycomplementing the statistical analysisused toconstruct ametamodelwithuser knowledgeelicited
manually (Kleijnen & Sargent 2000; Bigelow & Davis 2002). While these motivated metamodels are capable of
capturing critical components they require manual e�ort and significant input from a user. In contrast, our
approach to constructing augmentedmetamodels is fully automated and requires no user input.

6.3 More recently, researchers have conducted a study using an integrated agent-based andmetamodel to test the
four kinds of policy varying along two dimensions. The results identified thresholds causing non-linear dynam-
ics related to incentives and benefits (Polhill et al. 2013). In future work, we will look to apply our augmented
metamodel construction technique to this model to see if it is capable of identifying the same critical thresh-
olds.

Conclusion

7.1 The current practice to constructing first-order linear regression bottom-up metamodels needs improvement.
The linear sums employed by the statistical methods used to construct themodel give the impression that one
can compensate for one component of the system by improving another component even if such substitution
is inadequate or invalid. As a result the metamodel can fail to accurately reflect the critical components of the
system and may be misleading. We propose an approach to constructing augmented metamodels where the
predicates employedby statistical debuggers constrain substitutionsand tradeo�samongandwithin variables.
We demonstrate that our approach can reduce the information lost in the metamodel while making critical
components of the ABM explicit to users. These augmented bottom-up metamodels are more e�ective than
their baseline counterparts and other alternatives. Furthermore, they do not give users the impression that one
can compensate for one component of the system by improving another when such substitution is invalid. In
futurework, wewill explore howour augmentation approach can be adapted for advanced analysis techniques
and apply our approach to more complex ABMs.
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