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ABSTRACT

Emergent behaviors in simulations require explamatso
that valid behaviors can be separated from desigtnd-
ing errors. Validation of emergent behavior regsiac-
cumulation of insight into the behavior and the ditans
under which it arises. Previously, we have intatlan
approach, Explanation Exploration (EE), to gathmesight
into emergent behaviors using semi-automatic madap-
tation. We improve our previous work by iterativalgply-
ing causal inference procedures to samples gatteved
the semi-automatic model adaptation. Iterative igppibn
of causal inference procedures reveals the inferectof
identified abstractions within the model that cauke
emergent behavior. Uncovering these interactionssg
the subject matter expert new insight into the geet be-
havior and facilitates the validation process.

1 INTRODUCTION

In the past half century quantitative methods odlysis

have been developed to take advantage of compuahtio

resources. Simulation is gaining prominence aptbper
tool of scientific analysis under circumstances rghi¢ is
infeasible or impractical to study a system dinecths
models have become more complex, our capacity dern
stand their behavior and determine their validigs Isuf-
fered. Poorly understood model behaviors which aomp
mise overall model validity are dangerous.

Understandingemergentmodel behavior is challeng-
ing. Emergent behavior can arise from seeminglglated
phenomena, or it can reflect an error in a modetsoim-
plementation. Behavior is emergent if it is unexpdcand
stems from the interactions of the underlying congpus
of the model (Johnson 2006).

The challenge of establishing validity of emergeet
havior is evident in the results of recent epidéagy stud-

ies. Epidemiologists have explored governmentcydibr
controlling the spread of infectious diseases sagkmall-
pox and bird flu. Should a comprehensive vacoimati
program be initiated? How, and for how long shoind
fected individuals be isolated? Answers to thesestions
are full of conflict. Recently Elderd, (Elderd Z)Ohas
shown analytically that just four of the potentatiun-
dreds of independent variables in these studiescm@x-
treme sensitivity in model predictions, leadingstrious
conflict regarding remedial approaches involvingjidns
of dollars and millions of people. Subject matteperts
must be given additional capabilities to understtnebe-
havior of their models so that model results cander ef-
fectively and with confidence.

Our goal is to design and develop a novel approach
observed simulation behavior hypothesis testing #ia
lows users to validate or reject emergent modehtbieins
efficiently, and with confidence. Validating an ement
behavior, is different from validating a simulatjawhich is
a demonstration that a simulation meets expectédbe
iors. Emergent behavior validation is a demonstrathat
an unexpected behavior is valid (or not) for a giget of
conditions, or experimental frames (Zeigler 200@gth-
ods to validate simulations exist (Balaci 1997).degent
behavior validation is an active area of reseaveh. have
introduced “Explanation Exploration” (EE) (Gore Z00
for demonstrating that a given emergent behavimalil.
EE allows a subject matter expert (SME) to testtlypses
about the emergent behavior as a simulated pheraien
driven towards conditions of interest.

In this paper, we take EE a significant step furthg
offering SMEs additional insight into the interacts of
abstractions causing emergent behavior in a m@&jeap-
plying causal inference procedures we can reveainter-
actions of identified abstractions in the modelchicause
the emergent behavior. Uncovering these interastgives
the subject matter expert new insight into the gmetr be-
havior and facilitates the validation process.
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2 PREVIOUSWORK

Software engineers have addressed exploration ek-un
pected behaviors. We review research in static dynd
namic program analysis, Delta Debugging, and cansal
ference, and its applications.

Program slicing is a decomposition that extrabes t
program statements that affect the value of a tasggable
(Tip 1995). Static program slicing extracts thesegram
statements for all possible runs of the programnddyic
program slicing extracts them for one run of thegpam.
The program understanding community has succegsfull
used dynamic and static analysis to help programmer
gather insight into program behavior (Eisenbarti®130
These techniques have limited their focus to gaiben-
sight into deterministic programs on the sourceedegel.

Delta Debugging is an automated approach to program
debugging that isolates the causes of failingdaseés sys-
tematically. Delta Debugging requires a programthat
passes the test case, and one that fails it. Tusecs# a
failure is isolated by assessing outcomes of alterecu-
tions to determine whether a change in the progtae
makes a difference in the test outcome (Zeller 20D8lta
debugging does not assume changes are orderaw;-but
quires user choice of an instrumentation point@mek not
preserve validity of execution traces (Groce 2004).

Causal inferencing finds cause-effect relationships
among observed variables to explain a set of obfiens.
Causal inference theory unites two pieces of mastiem
and one piece of philosophy. The mathematical giece
directed acyclic graphs (DAGs) and probability theo
(with the focus on conditional independence), drelpghi-
losophy involves causation among variables (SpRl,
Pearl 2000). In causal inference theory, DAGs avery
two distinct functions: to represent sets of proligitdis-
tributions and to represent causal structures &p001).

DAGs represent probability distributions througte th
graphical relation “d-separation” (Spirtes 2001hjeh is a
relation among three disjoint sets of vertices idirected
graph. If a set of verticeg, blocks all connections between
a set of verticeX and a set of vertice¥, in a graphG,
thenX andY are d-separated I&/in G. In the DAG on the

left side of Figure 1,X, blocks the only directed path
connecting X, and X, so X;and X, are d-separated by

X, . Applying d-separation to connect a DAG G to the

probability distributionP means that if two sets of vertices
X andY are d-separated by a set of vertiges G, thenX
andY are independent conditional @nin the distribution
P. In Figure 1 X, and X, are d-separated b¥, . Note,
in all distributions the DAG can represenX, is inde-
pendent of X, conditional onX, . The notation for

independence is:

DAG d-separation Setof
Independencies
Xl - Xz - XS {XlJ-LX3|X2}

Figure 1: D-separation. (Schienes 2003).

X, L

pendent conditional orX, (Dawid 1979).

Often, distinct DAGs can represent the same set-of
dependence relations, and thus the same set oibdist
tions. Inference algorithms have been developedotn-
pute the DAGs that represent a given set of indégece
relations. The relationship between a set of inddpe-
cies, inference algorithms and DAGs is shown iruFég.
We will be using these inference algorithms to catep
DAGs for a given set of independence relationsunen-
hanced version of EE.

Causal inference procedures have been used ¢o- det
mine causal relationships among system events €eljres
cedures are tailored to assist users faced witengic
questions. Users range from forensics experts ngeidi
analyze the origins of a trojan horse program ("VWas
responsible for the creation of this file?") to thgstem
administrator needing to analyze intrusions ("Had tthe
intruder break in?"). These techniques have beewsto
assist security experts required to answer questidrout
the cause-effect relationships between various tevibrat
occur in a computer system (Jeyaraman 2006).

X, | Xzwhich means: X;and X, are inde-

Ranking and Selection procedures have been designed

to select the best system from a number of altewst
where the best system is defined by the given probl
Causal inference algorithms can be used to rankattters
or variables which affect a specified output. Hoemrv
ranking and selection is a fundamentally differgrdblem
from revealing the interactions of identified abstions
within a model causing emergent behavior. Improvene
in ranking and selection procedures will improve #bil-
ity of causal inference procedures to rank theuatce of
variables on a specified output.

Inference
DAGs . Set of
Algorithm Independencies
Ky = Xy = Xy le— { X, AL X, 1 X5}
X, « X, - X,
X« X, « Xg

Figure 2: The relationship between sets of indepeoigs
and inference algorithms. (Schienes 2003).
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3 EXPLANATION EXPLORATION AND CAUSAL
INFERENCE

Previously, we have introduced “Explanation Expliona’
(EE), for gathering insight into emergent behaviosing
semi-automatic model adaptation (Gore 2007). EElman
improved by iteratively applying causal inferenceqe-
dures to samples gathered from semi-automatic madiel
aptation, as we discuss here.

3.1 Explanation Exploration

EE is a method for increasing insight into unexpéct
emergent— behaviors, and providing a path to vatideof
valid behaviors. EE incorporates semi-automatedoeap
tion of conditions in which a user can test hype#sabout
emergent behaviors, and increase confidence abgput h
pothesized meaning of the emergent behaviors. Mode
validation is a goal, but not necessarily an oute@hEE.

Given an emergent behavior E, a user must establish
expectations regarding simulation behaviors needédo
modified to include the emergent behavior. Altéirredy
the user may decide the emergent behavior E, isriam
and not valid. EE facilitates this decision pracékhe user
generally needs to formulate a hypothesis, H, Bahow
emergent behavior E will be manifested under a itiomd
of interest, C. The user must identify possible eicab-
straction alternatives to search to create C. Td&r gan
test hypothesis H by observing the emergent behdvjo
under condition of interest C.

In the sailing example, C may be the condition “the

sail is full of wind' —wind flow is smooth over both sur-
faces of the sail. As the boat accelerates tHeraazst be
oriented increasingly towards the boat’s forwancclion.
If the user can identify model abstraction oppaties and
possible alternative bindings that can be exploted
achieve sail fullness for a given set of conditigchen s/he
can form and test the hypothesis H: the boat speikdthe

When testing a hypothesis about an emergent behav-maximized when the sail is full of wind.

ior, a SME may want to observe the emergent behavio
under a specified set of target behaviors. Howewden
there are non-linearities in simulated behavidne, SME
may not know how to adapt the simulation to achithe
desired target behaviors directly.

We advocate the application of semi-automated model

adaptation for efficient exploration of emergenhdeéor.
When constructing a model, abstractions inevitahlyst
be selected in order to reduce complexity, imprpee-
formance, or provide estimations for unknown infation.
We call those places where a SME can choose aniong a
stractionsabstraction opportunitieswe have developed a
language and supporting tools for a SME to identéip-
straction opportunities and alternatives for moalestrac-
tions. The supporting tools allow alternatives feach
model abstraction to be reflected in the simulasonrce
code as possible alternate bindings (Carnahan 2006)

With alternate bindings present in the source code,
model adaptation strategy employing optimizationr be
comes possible. EE uses optimization-based adaptat
test user hypotheses about an emergent behavieffiby
ciently creating user specified conditions of ietr A
user gathers insight by observing an emergent hahav
under the conditions of interest. If the observethdvior
matches the user’s hypothesis it passes the hygisttest,
otherwise it fails (Gore 2007).

As an example, we use the concepgapparent wind
to elucidate differences between EE and its impatower-
sion employing causal inference. It is a little tmofact
that some sailing craft can attain a forward vejothat
exceeds true wind speed. Such craft are capaleepddit-
ing apparent wingd which is a combination of true wind
speed and the craft’'s own forward velocity (Colg2d@1).
Apparent wind creates emergent behavior.

True Wind
er

Figure 3: SME Hypothesisitdirect

V= velocity of the sailboat.
V= velocity of the true wind.
@,= angle between true wind and the sailboat rudder.
@Q,= angle between true wind and the sailboat hull.
O = angle between true wind and the sailboat’s sail.
The EE Process is applied as follows :

1. The SME identifies emergent behavior, E, which

occurs wheV, >V,,, .

2. The SME speculates E will exhibit behaviog E
when condition C arises: “Boat speed will be
maximized when the sail is full of wind.” The

SME speculates tha®;, O,,, and O4 are al-
ternatives that can be searched to adapt the model
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to meet C. This hypothesis is H, which is shown
in Figure 3.@,, @,, and ©4 are chosen based on
the SME'’s understanding of sailing and wind. If E

is valid, it must possess the characteristics de-

scribed in i, when condition C arises.
3. The SME identifies model abstraction opportuni-

ties related td2,, @,, andQ,.

4. The SME identifies model abstraction alternatives
for each model abstraction opportunity.

5. The developer incorporates the model abstraction

alternatives into the simulation source code.

6. The SME believes Ewill be observed when C is
true, and that C will be true for some combination
of the model abstraction alternatives.

7. The developer and SME use optimization and/or
manual modification to discover when C is true.

8. The SME observes the simulation instance pro-
duced through model adaptation. The SME con-
firms or refutes H.

The SME gathers insight from the hypothesis test in
Step 8. S/he repeats the EE process until s/hgdthered
sufficient insight to validate or refute the emargbehav-
ior, E, in the simulation.

The sailing example illustrates how EE is applied t
emergent behavior occurring in a fictional modedxNwe
explore how EE is improved by adding causal infeeen
3.2 Improving EE with Causal | nference Procedures
Causal inference procedures create an explanatiora f
given set of observations. They require an unbliass of
observations of the variables of interest and freygluce a
causal theory explaining the relationship of theialdes.

A causal theory includes a causal model and pammet
which specify how each variable is influenced ia tausal
model. A causal model is a directed acyclic grapith a
1-1 mapping between vertices in the graph and biseof
interest. VariableX has a causal influence on variabléf
and only if a directed path exists from verdéxo vertexY
in the causal model. The model serves as the bEasthe
causal theory. Each edge in the causal model Isla
mapping with a parameter associated with the cathsal
ory. Each parameter specifies the strength of #usal in-
fluence (the probability thaX has a causal influence of
induced by the corresponding edge (Pearl 2000).

We improve EE by iteratively applying causal infer-
ence procedures to samples gathered from semi-atitom
model adaptation, Step 7 of the EE process. Instiis the
developer either chooses manual modification ointpé-
tion to adapt the model to meet the SME’s specifiexdi-
tion of interest. Each time optimization is usedItiple
runs of the simulation with alternate abstractiondmngs
are performed. Simulation results are collected tegated
as sample runs from the model space. We improvéEE

applying causal inference procedures to this sehoiples
to reveal the interactions of the identified absimms in
the model which cause an emergent behavior ofdster
Each condition of interest the user creates resualtnore
samples of the model space. In general, a largaplsa
size is expected to create a more accurate cdesaiyt
Samples collected from the optimization process can
not be used immediately by causal inference praesdu
Optimization samples regions in the model spach hiigh
probability of meeting the SME’s condition of ingst
more frequently. This bias is expected: denselypdizign
certain regions of a search space makes optimizaffec-
tive. Consequently, the samples are not uniforndoanty
distributed as required by causal inference proeedu
We use importance sampling to produce a uniform

random sample from the biased optimization sanipte.
portance sampling supports estimation of the progseof
a particular distribution, while only having sangplgener-
ated from a different distribution (Srinivasan 2R02 or-
der to create a sample with properties of a unifaandom
distribution we use the Uniform-Divide Algorithm éithe
Random Sampling Algorithm, which are described next

3.2.1 Uniform-Divide Algorithm

The Uniform-Divide Algorithm (UDA) takes as inputhé
ased set of samplés and a search spafe It outputs a
setR and an integeN. Each element oR is a bucket con-
taining arbitrarily many unordered samplés.represents
the number of buckets IR. UDA assumes the existence
of the following functions:
» divide(S, N} given a search spa&and an inte-
ger N, divide(S,N)outputs a set of buckeR.
Each bucket inR represents a non-overlapping,
1/N size area of search spage
 map(B,R) given a set of sampld® and a set of
bucketsR representing a search spasegp(B,R)

places eachB; into bucket R; such that bucket
R; covers the search area containing santgle

* noEmptyBuckets(R} given a set of bucketR
noEmptyBuckets(Rputputs true if and only if
each bucket iR contains at least one element.

Algorithm 1 (Unifor m-Divide Algorithm):

Input: B, S Output: R, N
Step 1: N:=0;
Q := NULL;
R := NULL;
Step 2: while noEmptyBuckets(Q) OR Q = NULL
R:=Q;
N := N+1;
Q :=divide(S,N);
map(B,Q);

end;
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UDA discretizes the search space into the maximum g faster than the speed of wind,, >V, . The user is
number of buckets such that each bucket contaitesaat

one sample, and each covers a uniform, non-overgpp
area of the search space. Each bucket contairg #ie

interested in creating condition of interest C: shd isfull
of wind The user wants to test the hypothesis H: boat

samples taken from the area of the search spadauttet speed,V,, will be maximized when the sail is full of

covers. R is organized so that each biased sample is wind. The improved EE process is applied as foltows

weighted with the probability that the sample was-p 1-6 remain the same.

duced from a uniform random distribution. We uke t 7. The developer and SME use optimization to dis-

Random Sampling Algorithm to sampk producingN cover cases where C is true.

uniform random samples from the search space. 8. If optimization is used the developer records the
samples from the model space explored by the op-

3.2.2 The Random Sampling Algorithm timization process in s@&. Each of these samples

is a 5-tuple: @, @, @, SailFullness V). The

developer also records the dimensions of the
model space searched in data struc8ire

9. The developer applies UDA ,S UDA outputs
R and N, the set of filled buckets covering the
search spacBand the number of buckets.

10. The developer applies RSA B N RSA outputs
N uniform random samples in g8t

11. The developer applies the causal inference proce-
dureP, to setO. P outputs causal theofly.

12. The SME views and queries causal thedrfor

The Random Sampling Algorithm (RSA) takes as imgput
set of bucket®k where each bucket contains a set of sam-
ples, and an integell which represents the number of
buckets inR. RSA outputs a seéD containingN random
samples from the search space covered by the sgh&
RSA assumes the existence of the following funation
« rand(l,N) - given two integers andN, wherel <N,
rand(l,N) outputs a random integer betwdeand
N inclusive, with each integer betwekandN in-
clusive being equally likely.

« sampleR,) - given a bucketR, , sample®R, ) insight into the interactions of abstraction oppor-
returns one element from the bucket chosen ran- tunities within the model that cause E. The causal
domly with all elements in the bucket being theory, T, for the sailing example is shown in Fig-
equally likely. ure 4.T shows that changes i@, @, and @,

cause the sail to be full of wind, which in turn

Algorithm 2 (Random Sampling Algorithm): causes the sailboat to change velocity.

Input: R, N Output: O

. — . 13. The SME observes the simulation instance pro-
Step 1: O := NULL; .
P | =1 duced through model adaptation. The SME con-
it firms or refutes H.
Step 2: while KN e .
P W Il?:_: rand(L,N); The SME gathers insight from the causal theory in

Step 12 and the hypothesis test in Step 13. Sffeate the
add sampleR ) to O; improved EE process until she has gathered suffidie
| =1+1; sight to validate or refute the emergent behagrn the

end; simulation. Each time the SME repeats the EE pmoces
more samples from the model space are recordedhend
When used immediately after UDA, RSA outpiis causal theory is expected to become more accurate.

uniform random samples from the search space wdnieh

suitable for use with causal inference procedurdse of

these algorithms to produce a uniform random sangple

straight forward, but an important capability ofpraved R

EE. Any optimization process can be used to adapbdel

to meet new conditions of interest (Step 7 of tliedfoc-

ess) and improved EE will produce causal theoriiisourt

any change to UDA or RSA.

3.2.3 The Sailing Example and I mproved EE @

To elucidate how causal inference procedures gpéeap
to and improve EE we revisit the sailing examplec#l
user identified emergent behavior E: the sailbsedtavel- Figure 4: Causal Theoflyfor the sailing example.
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SailFullness = Vsb= Low

LOW

Figure 5: Intervening oBailFullness The double circle
denotes where the user specified change occurs.

3.3  New Capabilities of Improved EE
Improved EE creates new opportunities. Through its
use of causal inference procedures it producesisatthe-
ory that reveals the interactions of abstractiopasfunities
that cause emergent behavior. The causal theonyosisp
ordering of abstraction opportunities based onrtb#fect
on emergent behavior. The theory can be querieteligo
predict user specified interventions to the modgdch
causal theory provides explicit formulas for estiimg
how abstraction bindings will be affected by change
others (Spirtes 2001). For example, considermeg8ail-
Fullnessin Figure 4 to “low”. The result is shown in Fig-

ure 5. By settingsailFullness‘low” the effects of@;, Q,,
and @, are screened off. The remaining cau&ai|Fullness

= LOW causes sailboat velocity/, , to also be low.

The ability to predict the results of interventions
within given confidence intervals provides a com@n-
tary exploration capability to model adaptationedicting
interventions offers users a lightweight, probatiii
method to explore how changes to one abstractigorep
tunity affect others in the model. However, predigtin-
tervention effects is not as powerful as model satam
because predicting interventions cannot be useestaiser
hypotheses for conditions of interest.

4 IMPROVED EE AND EPIDEMIOLOGY

To evaluate improved EE we conducted a study uamg
agent based epidemic model (Dunham 2005). We campar
our results with results from an established déffeial
equation model used to model SEIR diseases (Li)}1995

41  Epidemic Model Overview

Epidemics have been modeled mathematically for aver
century. The well established SEIR model of infeasi
disease spread is described by the following systidif-
ferential equations wheg q, v, €, A andu are positive pa-
rameters and S, E, I, and R denote the fractionthef
population that are susceptible, exposed, infestiand
removed, respectively. Individuals are susceptiltken
exposed (in the latent period), then infectiougnthre-
moved from the studied population (Li 1995).

S =-A1PS"+u-uS
E =A1"S?—(+Uu)E
| =E—(y+u)l

R =y -uR (1)

We compare the results of the established diffeaknt
equation model with Dunham’s (Dunham 2005) agent
based SEIR epidemic model (ABM). The Dunham model
predicts disease spread by modeling interactiona @rD
torus. Infectious individuals search for susceptiihdi-
viduals within a specified radius and spread thé&ction
with a given probability. Dunham claims, “the cussus-
ceptible, exposed, infected, removed) created aneahta-
tive match to real-world epidemic data. With proper
parameterization, this model could be used forisgal
simulations” (Dunham 2005). Figures 6 and 7 shesults
for Dunham’s ABM and the differential equation mbfte
an SEIR epidemic for 100 days for a population 00.1
Results match closely: standard deviations of spaad-
ing curves differ by less than 2% of the populasare.

ABM Model SEIR Epidemic Graph

# of Individuals
3

o 10 20 a0 a0 50 &0 70 80 o0
Day #

|- - Susceptible — Exposed Infected — Removed|

Figure 6: Dunham’s ABM with the author’s suggested
parameterization for a population of 100 over 189sd

Differential Equation Model SEIR Epidemic Graph
100 -
a0 -
80
70
80
50
40

# of Individuals

30 1
20
10
o

40 50 860 70 en an
Day #

|- - Susceptible — Exposed Infected — Removed|
Figure 7: Differential equation model with new iafien

rate = 8.0 for a population of 100 over 100 days.
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ABM Model SEIR Epidemic Graph

# of Individuals

50 60 70 80 o0 100

Day#

|- - Susceptible — Exposed Infected — Remuved|

Figure 8: Dunham’s ABM with the author’s suggested
parameterization for a population of 1,000 over dags.

Dunham’s ABM appears to produce valid predictions.
Differences between it and accepted data or mathelald
be investigated to determine the ABM’s generaldrgli

4.2  Emergent Behavior within the Epidemic M odel

Differential Equation Model SEIR Epidemic Graph

# of Individuals

o 10 20 30 a0 50 60 70 80 o0 100
Day#

|- - Susceptible — Exposed Infected — Removed|

Figure 9: Differential equation based model witkvrie-
fection rate = 8.0 for a population of 1,000 oveb Hays.

We instrumented Dunham’s ABM to capture the rate
of new infections and used improved EE to creagectin-
dition of interest C: the rate of new infections8i® per in-
fected individual. Using C as a target behavice, tested
our hypothesis H: when the rate of new infectian8.D in
both models, their predictions will be similar. 8Jswe
used improved EE to produce a causal theory desgrib

We have observed an unexpected —emergent— behav-the abstraction opportunities that causally infaeerthe

ior in Dunham’s ABM for a population size of 1,00By
only changing the population parameter from sizé itD
Figure 6 and Figure 7 to size 1,000 significantiffedent
predictions for disease spread emerge. As shovigure
8 Dunham'’s ABM predicts a shorter, heightened itides
period where no infected individuals remain aftay 5.
In contrast, the differential equation model shawrFig-
ure 9 predicts a longer infectious period with atieus in-
dividuals still present at day 80. The standardiat®n of
the ABM’s curves from the accepted differential atipn
model’s curves are (S) 173.2 individuals or 17.3@Pthe
population, (E) 132.6 individuals, 13.26%, (I) 181indi-
viduals, 18.16%, and (R) 110.6 individuals, 11.06&¥an-
dard deviations, compared to those of the populatib
size 100 are an order of magnitude greater. Bageeixe
amples in (Dunham 2005) and Figures 6 and 7 weatege
the ABM to predict results similar to the differexhtequa-
tion based model. The differences represent an gemer
behavior.

4.3 Improved EE and New Infection Rate

To understand why Dunham’s ABM predictions differ s
significantly for a population of size 1,000, araldeter-
mine if the model is valid we applied improved BFi-
demic models often include parameter(s) which regme
the rate of new infections. In Equation 1 this ristejov-

erned by the termAl °S%.  New infections occur in
Dunham’s ABM over time but there is no input paréne
for infection rate, and we found none published.

rate of new infections in Dunham’s ABM. The indigh
gained from observing Dunham’s ABM under the condi-
tion of interest C, and the insight provided by ttaisal
theory helped us determine if Dunham’s ABM is vétd

a population of size 1,000.

We adapted Dunham’s ABM by searching alternative
bindings for six different abstraction opportursti® create
the condition of interest C: infection rate = 8Har each
model run searched using improved EE we recorded:

» the explored alternative bindings for the six model

abstraction opportunities:

- the width, W, of the 2D torus

- the height, H, of the 2D torus

- the probability, B, an infected individual
stays at home and does not travel to work.

- the probability, X, an infected individual
pushes the infection onto a susceptible indi-
vidual within the specified radius.

- the mean number of day&l , an individual
remains in the exposed state (E) before transi-
tioning to the infected state (I).

- the mean number of day$R, an individual
remains in the infected state (I) before transi-
tioning to the removed state (R)
» the rate of new infectiom,
» the number of individuals susceptible at day 25, S
» the number of individuals exposed at day 25, E
» the number of individuals removed at day 25, |
» the number of individuals infected at day 25, R
» the median standard deviation of the four agents
based curvesy
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ABM Model SEIR Epidemic Graph

# of Individuals

50 60 100

Day#

40

10 20 30 70 80 o0

|- - Busceptible — Exposed Infected — Remuved|

Figure 10: Dunham’s ABM for condition C: new infeet
rate = 8.0 for a population of 1,000 over 100 days.

When the condition of interest, C, was achievedreshe
the two models’ infection rates where 8.0, DunhaABiV
predictions closely match those of the differenéigation
based model. This is shown in Figure 10. The stahd
deviation of Dunham’s ABM curves from the accepdéd
ferential equation model’s curves are (S) 18.9vidtials
or 1.89% of the population, (E) 11.6 individualsl@%, (1)
12.4 individuals, 1.24%, and (R) 12.7 individuals27%.
Our hypothesis is correct: when the rate of newdtibns
is 8.0 in both models their predictions are simifius we
gain confidence that Dunham’s ABM can be used to co
rectly predict the spread of epidemic SEIR diseadesv-
ever, we still do not understand how the rate of ndec-
tions is controlled in the agent based model. WitHally
understanding how the interactions of abstractippootu-
nities cause the rate of new infections to chamgegannot
explain the emergent behavior of Dunham’s ABM.

The causal theory produced by improved EE enables
us to understand how the rate of new infectionsois-
trolled in Dunham’s ABM. The causal theory for tihedel
adaptation performed to create the condition cériggt C
is shown in Figure 11. W and H represent the wattd
height respectively of the 2D torus on which indivéls
interact. X represents the probability an infedtetividual
infects another individual within the specified izl S, E,
I, and R represent the number of susceptible, edtads-
fected, and removed individuals at day g5s the rate of
new infections per infected individual ands the median
standard deviation of the four curves of DunhamBNA
from the curves of the differential equation basextiel.

The causal theory reveals that the width and heigh
the 2D torus, along with the probability of infentihave a
causal influence on the infection rate. Also, th&egtion
rate has a causal influence on the median stardkarid-
tion of the four curves in Dunham’'s ABM. These gtds
help us understand how the rate of new infectienson-
trolled in the agent based model.

Figure 11: The causal theory output by Improvedi&E
the agent based SEIR epidemic simulation (Dunhad®20

Increasing the width and height of the 2D torussesu
the population to become less dense, ultimatelgingtthe
rate of new infections to decrease. A decreashdrptob-
ability that an infected individual infects a sustikle in-
dividual within the specified radius also causedearease
in the rate of new infection. These interactionkensense.
The significantly different prediction of DunhamABM
in Figure 8 is due to a too-high rate of new infac$ per
individual. If the size of the torus is increast@maintain
a constant population density as population iseased
then Dunham’s ABM does track the predictions of diife
ferential equation model. A more dense torus irggdahe
number of exposed and infected individuals cauaimgn-
crease in the rate of new infections per individiidis ex-
planation is a product of applying the causal tiiguortion
of improved EE, revealing how abstraction oppotiasi
cause the emergent behavior in the model.

5 CONCLUSIONSAND FUTURE WORK
Computational power has reached a state where we ca
model and explore research topics as complex as the
spread of epidemic diseases individual by individbaw-
ever, methods for analyzing and testing hypothesesit
emergent behaviors that result when developing soaf
plex models are lacking. The disparity between ahility
to build complex models and our ability to undemsta
emergent behaviors exhibited by these models aglyers
affects the advancement of scientific understanding

Our goal is to design and develop an effective ap-
proach to support user validation or rejection okx+
pected model behaviors efficiently, and with coafide.

We have improved the capabilities of our previoyslyp-
lished approach, EE, by offering SMEs additionalight
into the interactions of identified abstractionsusiag
emergent behavior in a model. This insight is ackdeby
iteratively applying causal inference proceduresamples
from different runs of the model. In our future \owe
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expect to improve our causal insight by correctiynbin-
ing causal analysis data (probabilistic) withistahalysis
data (conservative). Furthermore, using uncertaiepre-
sentation we plan to extend EE to allow users teepke
two new characteristics of the emergent behavi@oatli-
tions of interest: 1) the likelihood of the giventput for
the model and 2) the range of possible outputs.
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